Drainage Report

For

Bryant Pharmacy

Bryant, Saline County, Arkansas

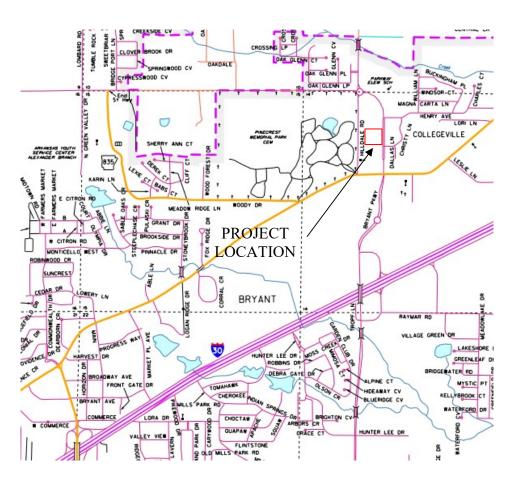
November 13, 2025

Prepared by:

RICHARDSON ENGINEERING, PLLC

325 W. South St. Benton, AR 72015 501-315-7225

TABLE OF CONTENTS


Title	Page Number
Project Owner Information	3
Project Location and Description	3
Site Drainage	4
Runoff Summary's	5
Pre- Development Drainage Basin Information	5
Overall Site Post- Development Drainage Basin Information	6
On-Site Drainage Inlet Basin Information	6
Site Discharge to the West	7
Site Discharge to the East	8
Site Discharge to the South	8
Recommendations/Summary	8
Appendices:	9
Runoff Coefficient Calculation	10
Time of Concentration Calculation	11
NRCS Soil Report	12
Site Drainage Basin Maps	13
Trickle Channel Velocity Calculation	14
Overflow Wier Blockage Calculation	15
SSA Design Layout	16
Storm System Design (SSA)	17
2 Year Design Storm	18
10 Year Design Storm	19
25 Year Design Storm	20
50 Year Design Storm	21
100 Year Design Storm	22
Pre and Post Development Hydrographs (Hydrology Studio)	23

Project Owner Information

Jon Martin 5501 Lombard Road Alexander, AR 72002

Project Location and Description

The project is located on West side of the Bryant Parkway, part of the Southeast Quater of the Northwest Quarter, Section 14, Township 1-S, Range 14-W, Saline County, Arkansas.

Vicinity Map – N.T.S

This project is a proposed Commercial Development, located in the City of Bryant, Saline County.

Site Drainage

Pre-Development

The pre-developed runoff for the site flows to the East, West, and South. The on-site drainage basins have been broken down into five separate basins that discharge water offsite. Drainage Basins A and B discharge water to the West, Basin C discharges water to the South, and Basins D and E discharge water to the East. The pre-development drainage basin delineation can be found in the appendix of this report.

The pre-development runoff condition is undeveloped/woods.

Post-Development

The site drainage starts on the South side of the project and flows to the North. The drainage is sheet flows across the proposed parking lot and intercepted by the proposed storm sewer system and is discharged into a proposed detention basin on the Northwest corner of the project. There are also some small areas that discharge to the East and South from the site.

The City of Bryant Drainage Manual utilized different C values for each storm event. The C value for the 100-year design storm was utilized for all storm events for the drainage analysis for this site.

The minimum required volume of the detention basin was found by comparing the predevelopment rational method hydrograph for the area that the detention pond is being discharged, to the post-development modified rational method hydrograph for the area that the detention basin is receiving using the Hydrology Studio program. The minimum required volume was found to be 5,157 CF for the 100-year storm event. In order to meet the City of Bryants Stormwater Manual detention requirements, the detention pond has to be sized with at least a 25% factory of safety; therefore, the minimum size of the detention pond is 6,447 CF.

The proposed detention basin will utilize an orifice/riser/culvert discharge structure. Post-Development Basin "A" is the drainage basin that discharges water into the proposed detention basin. Post-development drainage basin "A" consists of all of the individual drainage basins for CB-1, CB-2, CB-3, AD-4, the proposed building areas for phase 2 (i.e. roof drains), and the detention pond area. Post-Development Basin B, C, D, and E consist of the grass tie back slopes from the proposed pavement to existing grade and a small portion of the entrance drives that tie down to the existing grade on the Bryant Parkway. These areas are not routed through the detention basin, so they were calculated by themselves. The detention basin and post-development basin "B" will be discharged to the West, post-development basin "C" and "D" will be discharged to the East, and post-development basin "E" will be discharged to the South. A delineation for the drainage basins that were used in Hydrology Studio (for the overall site drainage basins), as well as a delineation of the basins that were used in Storm and Sanitary Analysis (on-site

storm inlets) can be seen in the appendix of this report.

The post-development runoff conditions changed from undeveloped/woods to commercial development.

Drainage

Runoff Summary's

Pre- Development Drainage Basin Information

Drainage

Overall Project Site Area: 1.92 Acres

Overall Pre-Development Drainage Basin Study Area: 6.06 Acres

	Drainage Basins	Area (Ac)	C Value	Concentration (min)	
	Basin A Basin B Basin C Basin D Basin E	1.44 3.26 0.33 0.50 0.53	0.56 0.59 0.65 0.54 0.55	14 14 11 15 19	
Design Storm	Basin A (cfs)	Basin B (cfs)	Basin (cfs)		Basin E (cfs)
2-yr 10-yr 25-yr 50-yr 100-yr	3.11 4.17 4.79 5.24 5.69	7.41 9.94 11.43 12.50 13.57	0.92 1.24 1.42 1.55 1.69	1.35 1.56 1.70	0.98 1.31 1.51 1.65 1.79

Time of

Overall Post-Development Drainage Study Area: 6.02 Acres

Overall Site Post- Development Drainage Basin Information

	Drainage Basins	Drainage Area (Ac)	C Value	Time of Concentration (min)	
	Basin A Basin B Basin C Basin D	1.56 3.67 0.38 0.12	0.85 0.60 0.72 0.75	12 14 7 17	
Design Storm	Basin E Basin A (cfs)	0.29 Basin B (cfs)	0.63 Basin (cfs)		Basin E (cfs)
2-yr 10-yr 25-yr 50-yr 100-yr	5.48 7.35 8.44 9.23 10.02	8.49 11.38 13.08 14.31 15.53	1.44 1.93 2.22 2.42 2.64	0.28 0.38 0.44 0.48	0.66 0.89 1.02 1.12 1.21

On-Site Drainage Inlet Basin Information

	Drainage Basins	Drainage Area (Ac)	C Value	Time of Concentration (min)	n
	CB-1	0.36	0.85	2.68	
	CB-2	0.16	0.85	8.50	
	CB-3	0.30	0.85	10.73	
	AD-4	0.40	0.85	11.76	
Design Storm			3-2 fs)	CB-3 (cfs)	AD-4 (cfs)
2-yr	2.32	0.	65	1.09	1.40
10-yr	3.03		87	1.46	1.86
25-yr	3.48	1.	00	1.68	2.14
50-yr	3.83	1.	09	1.84	2.34
100-yr	4.16	1.	19	1.99	2.54

Site Discharge to the West to Include Detention Basin

Overall Development Area = 1.92 Ac

Pre-Development Drainage Study Area = 4.70

Post-Development Drainage Study Area = 5.23

Existing Condition runoff Coefficient: C = 0.56/0.59

Proposed runoff Coefficient: C = 0.85/0.60

Tc Undeveloped = 14 Minutes (TR55 Method)

Tc Developed = 12/14 Minutes (TR55 Method)

Detention Basin Required Volume: 6,447 CF

Detention Basin Volume: 9,802 CF

Maximum Storage: 4,240 CF

Discharge Structure: Orifice/Riser/Culvert

Design Storm	Pre-Development Flow Rate (cfs)	Post- Development Flow Rate (cfs)	Post- Development w/ Detention	Maximum Water Elevation in
			Flow Rate (cfs)	Pond (ft)
2-yr	10.52	13.42	10.30	421.39
10-yr	14.11	17.99	13.53	422.03
25-yr	16.22	20.68	15.42	422.3
50-yr	17.74	22.62	16.77	422.54
100-yr	19.26	24.56	18.08	422.78

Should both orifices get 100 percent blocked and the water can only be discharged from the pond over the top of the overflow structure, the maximum water elevation in the pond reaches 423.27. The water elevations for the other design storms can be seen in the appendix.

Site Discharge to the East

Pre-Development Drainage Study Area = 0.83

Post-Development Drainage Study Area = 0.50

Existing Condition runoff Coefficient: C = 0.65/0.54

Proposed runoff Coefficient: C = 0.72/0.67

Tc Undeveloped = 11/15 Minutes (TR55 Method)

Tc Developed = 7/17 Minutes (TR55 Method)

	Pre-Development	Post-
Design Storm	Flow Rate (cfs)	Development
		Flow Rate (cfs)
2-yr	1.73	1.56
10-yr	2.31	2.09
25-yr	2.66	2.40
50-yr	2.91	2.62
100-yr	3.16	2.85

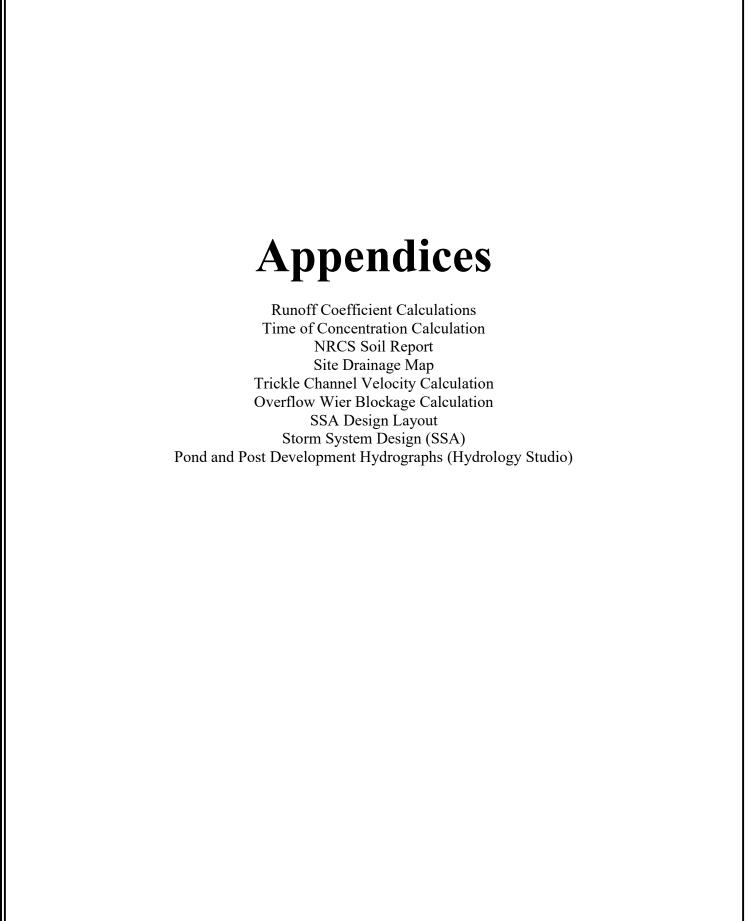
Site Discharge to the South

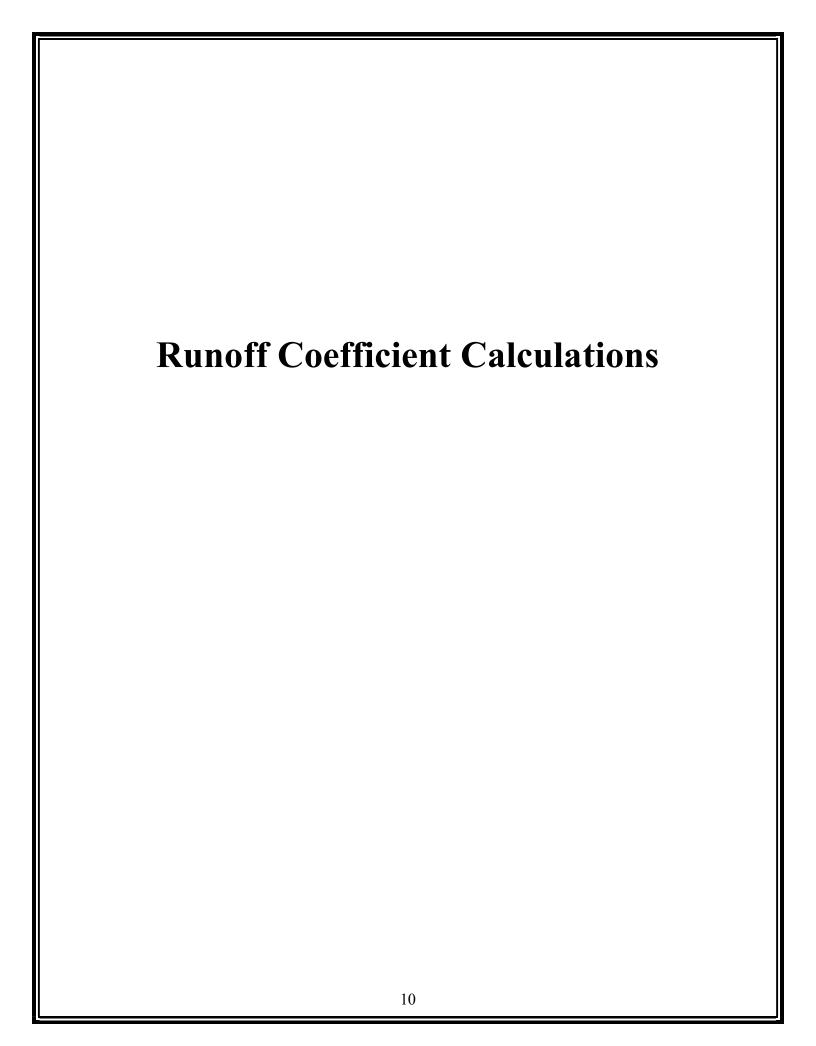
Pre-Development Drainage Study Area = 0.53

Post-Development Drainage Study Area = 0.29

Existing Condition runoff Coefficient: C = 0.55

Proposed runoff Coefficient: C = 0.63


Tc Undeveloped = 19 Minutes (TR55 Method)


Tc Developed = 16 Minutes (TR55 Method)

Design Storm	Pre-Development Flow Rate (cfs)	Post- Development Flow Rate (cfs)
2-yr	0.98	0.66
10-yr	1.31	0.89
25-yr	1.51	1.02
50-yr	1.65	1.12
100-yr	1.79	1.21

Recommendations/Summary

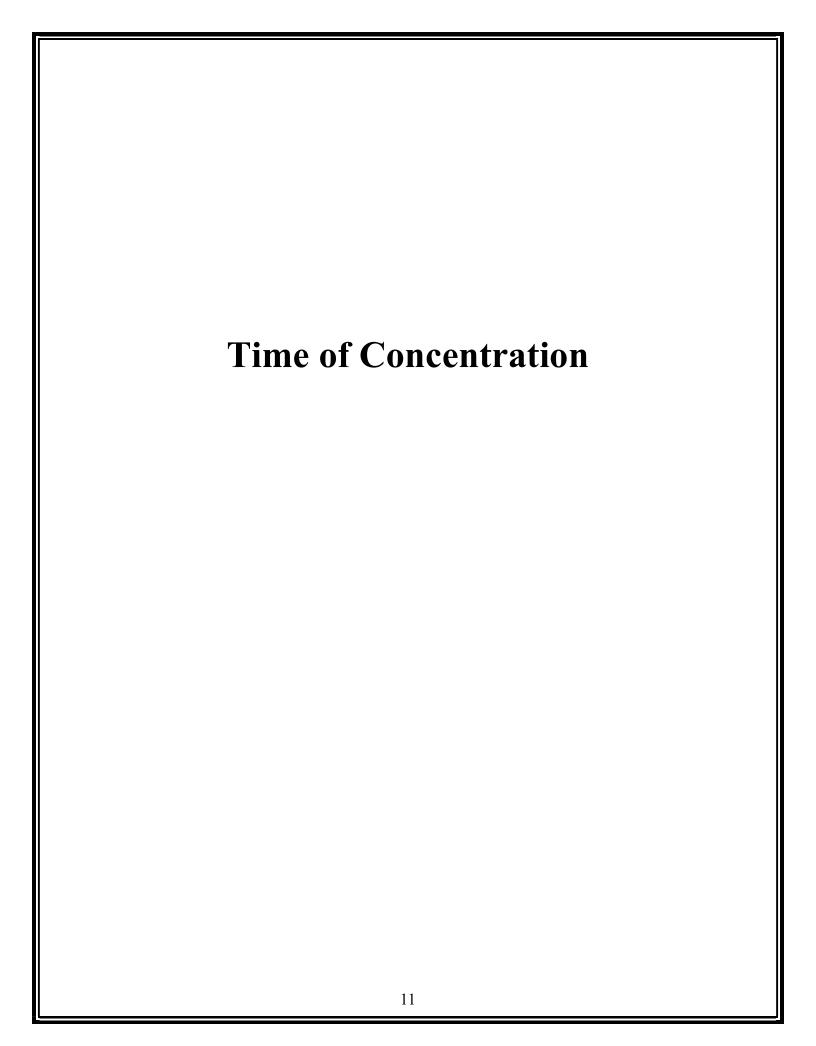
The proposed drainage improvements include a storm sewer system and a detention basin on the Northwest corner of the project. The proposed detention basin releases the post development runoff at a lower rate than the pre-development condition.

PROJECT <u>025- 029</u>	COMPOSITE	(CALLULATION	DATE 11/13/2025
PRE-DEV		* ALC CLAY SOIL	
BASIN"A"	A= 1.44	re.	
50% -	2 - 7%	C= 0.50	
50%.	> 7%	C= 0.62	
C =	(0.50)(0.72	1.44	2) = 0.56
BASIN . A	3" A= 3	·26 Ac (14200	>6 SF)
IMPERVIOUS	; 2970 9.	E C= 0.95	
Pérveos :	30% - 2-1% 4 10% - 77% 9	17115F C = 0.5 7325 SF C = 0.62	
C = -	(2970)(095)	+ (41711) (0.5) + (9.	7325)(0.62)
		142006	
	= 0.59		

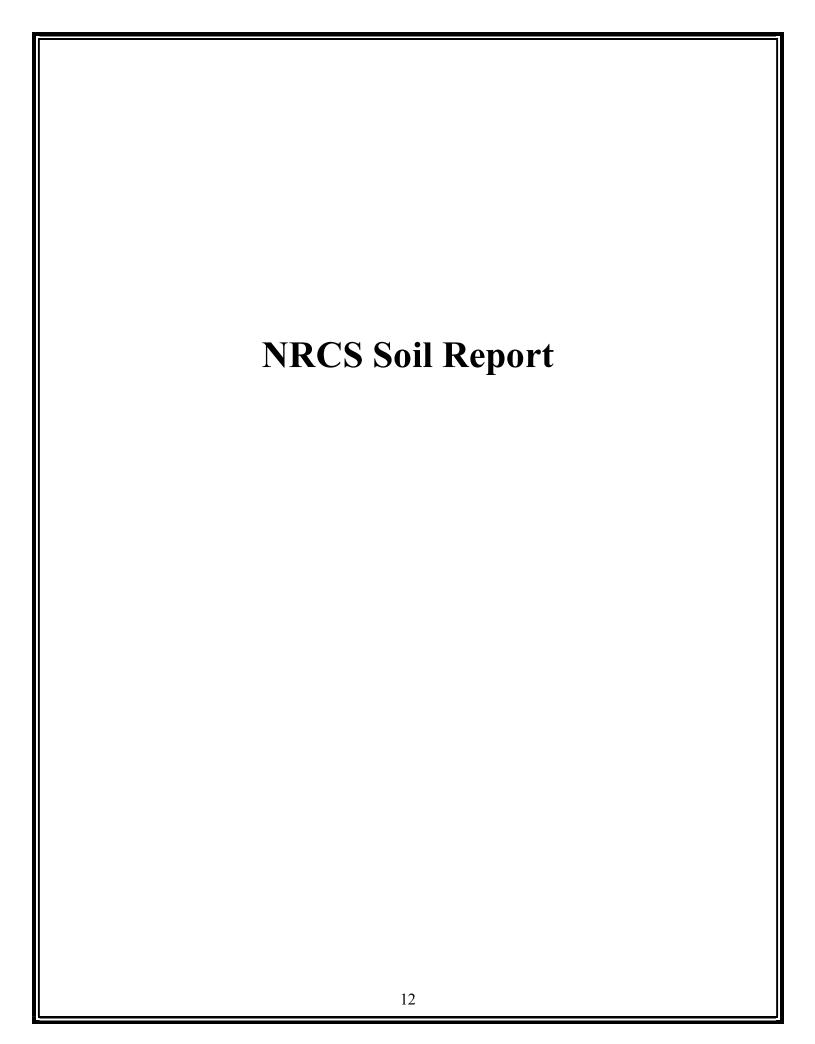
)JEC I	325-329	(ALCOLATION	DATE 11/13/2025
	Busin "C"	A=0.33 Az (14374	5 5 £)
	IMPERMOUS !	A= 2225 35 C=0.95	
		· 2-7% A: 24705E C: 0.50	
	30 %	- > 7% A: 9880 SE (= 0.6	2
	८ = (२५४५)(0.95) + (2470)(0.50) - (9880)(0-62)
		19375	
	= 0.	65	
	BA310 10"	A=50 A= (21780 SE)	
	PERVIOUS: A	LE 19820 SF C=0.50	
	IANFENOUS : A	= 1960 47	
	c = (19820)(o.	5) + (1960)(0.95) = 0.54 21780	

TROJECI_	025-029	C CALLULATION	DATE 11/13/2025
	BASIN	"E" A: 0.53 Ac	(230875F)
	IMPERNOUS	A: 2613 5F C	- 2.95
	Pernous	A = 20474 52 (=	= 0.50
	<i>C</i> =	2613)(0.95) + (20474)	(0.59)
*****		23087	
		- 0.55	

ROJECI_	025-029	(CALLULATION	DATE ///3/2025
	POST - DEVO	-C-P6-D	
-444-140 0033 84414	BASIN "A"	A= 1.56 Ac	
	PERVICUS: O.	36 de C= 0.50	
	IMPERNOUS: 1.	20 xc (: 0.95	
	6 (0.36	()(0.50) + (1.20)(0 1.56	² -95) = 0.85
	BASIN "B"	A = 3.67 AC	
	IMPERVIOUS:	A = 0.144 Ac C=	0.95
		- 2-7½ 1.06AC	C=0.50
	70%	- > 7/. Z.466 Ac	C = 0.62
	C = (0.144)(0.95) + (1.06) (0.50)+(Z.466)(0.62)
		3.67	
	> 0.60		
-			



PROJECT 025-029 (CALCULATION	DATE_11/13/2025
BASIN "C" A = 0.38 AC (16553	5F)
IMPERNOUS: A: 6956 SF C= 0.95	
PERVIOUS: 50%-2-7% 4801.55 (=0.50	
\$% -> 7% Y801.5 5F C=0.62	
C= (6950)(0.95) + (4801.5)(0.50) + (430).	5)(0.62)
= 0,72	
BAGN" D" A= 0.12 Az (5227	7.3F)
PERVIOUS: A = 3267 512 (=0.50)	
IMPERUOUS! A= 1960 5F C=0.95	
C= (3267)(0.50) + (1760)(0.95) =	0.67


(6/6)

PROJECT_	025-029	C CANCULATION	DATE 11/13/2-25	
	BASIN "E"	A= 0.29 4c	(12632 5/=)	
	RERNOUS:	A = 8982 5F	C= 0.53	
	IMPERVIOUS:	A: 3650 SF	C-0.95	
	C= (B98	12)(0.50) + (3650)(0.95)	
		12632	State of the Control	
	= 0.63			

PROJECT_025-	029	Te CALCULATION	DATE 11/13/2025
	Post - DE	U BASIN A	72
Şu	B - AD-4	1 To: 11.76 min	
PIPE	/8	L = 128 V * 60 (8.12)4	- 0.76 mm
9185	Ы гэ	(10.4)(60)	2 14 7 2
		12:16 m	

MAP LEGEND

Area of Interest (AOI)

Area of Interest (AOI)

Soils

Soil Map Unit Polygons

Soil Map Unit Points

Special Point Features

Blowout

Borrow Pit

Clay Spot

Closed Depression

Gravel Pit

... Gravelly Spot

Candfill

Lava Flow

Marsh or swamp

Mine or Quarry

Miscellaneous Water

Perennial Water

Rock Outcrop

Saline Spot
Sandy Spot

Severely Eroded Spot

Sinkhole

Slide or Slip

Sodic Spot

__.._

Spoil Area

Stony Spot

Wery Stony Spot

Wet Spot
 Other

Special Line Features

Water Features

Δ

Streams and Canals

Transportation

Rails

Interstate Highways

~

US Routes
Major Roads

Local Roads

Background

Aerial Photography

MAP INFORMATION

The soil surveys that comprise your AOI were mapped at 1:20.000.

Warning: Soil Map may not be valid at this scale.

Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale

Please rely on the bar scale on each map sheet for map measurements.

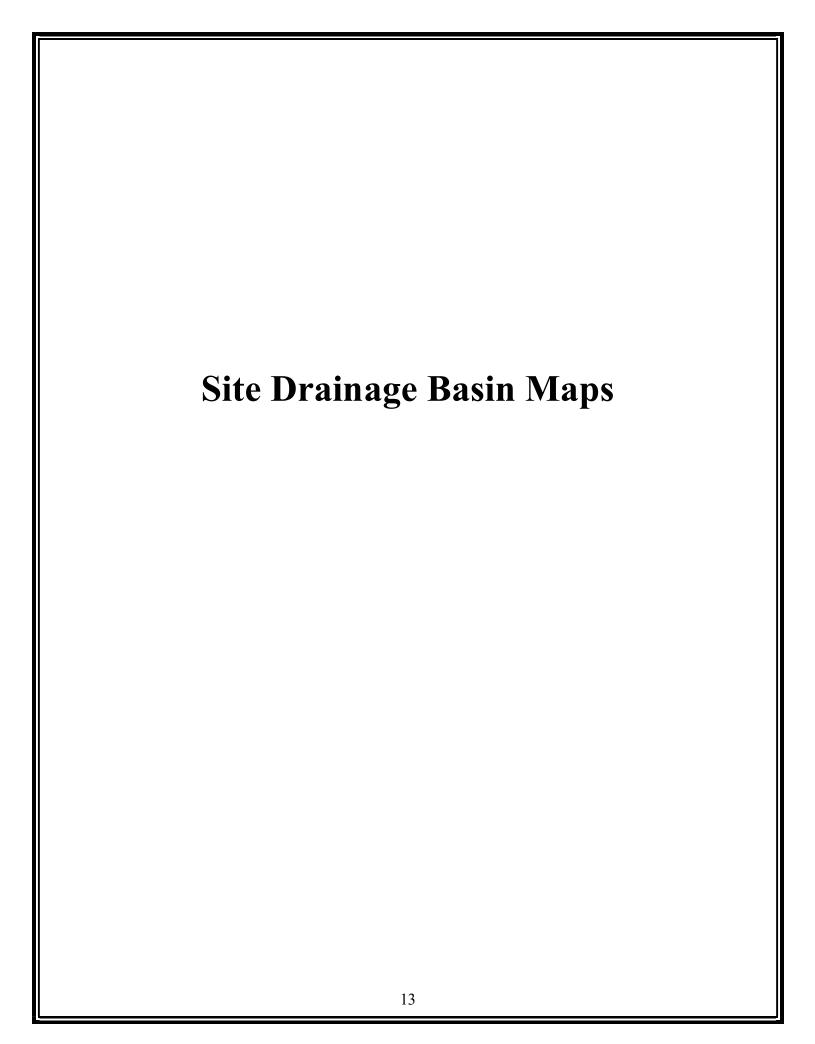
Source of Map: Natural Resources Conservation Service Web Soil Survey URL:

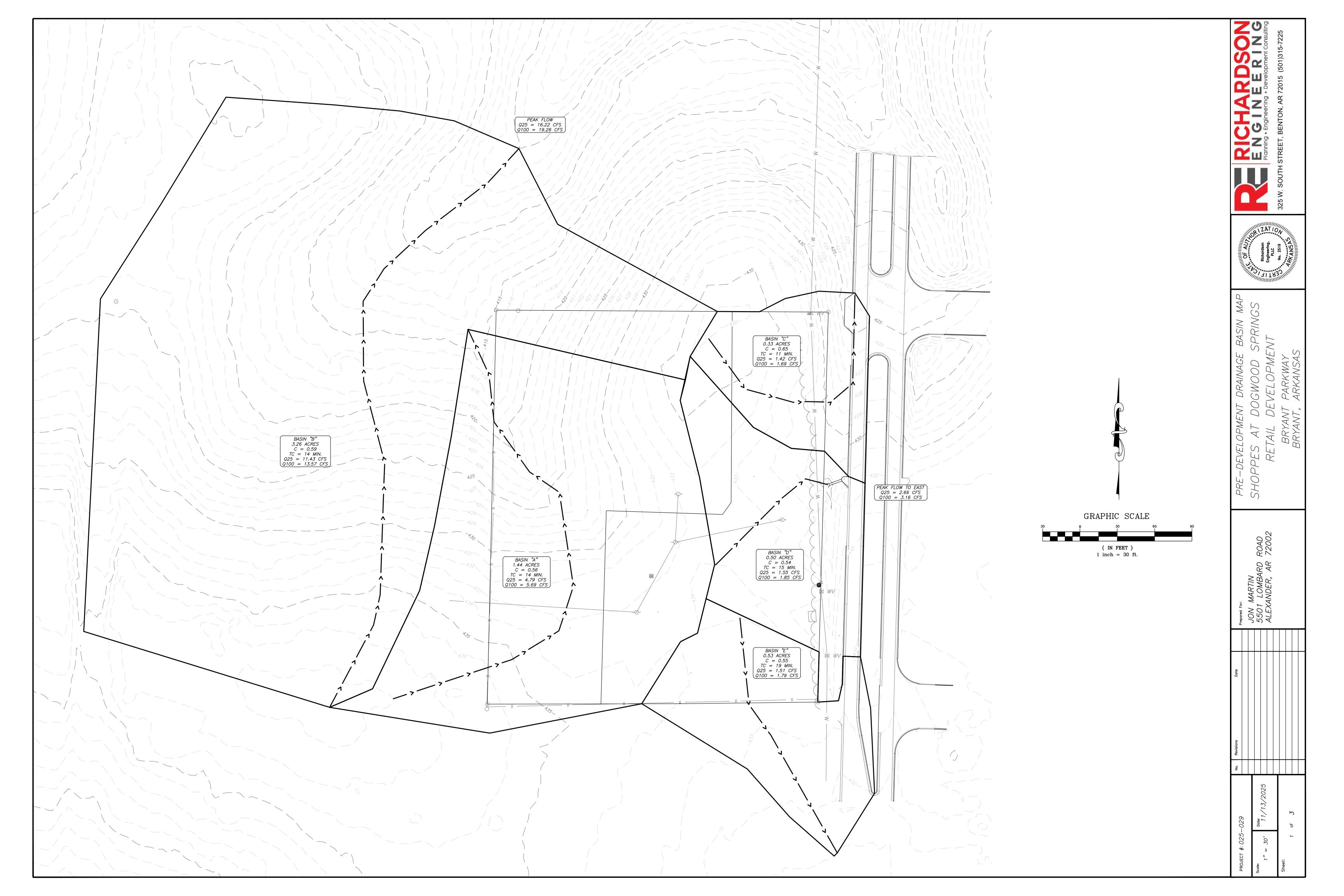
Coordinate System: Web Mercator (EPSG:3857)

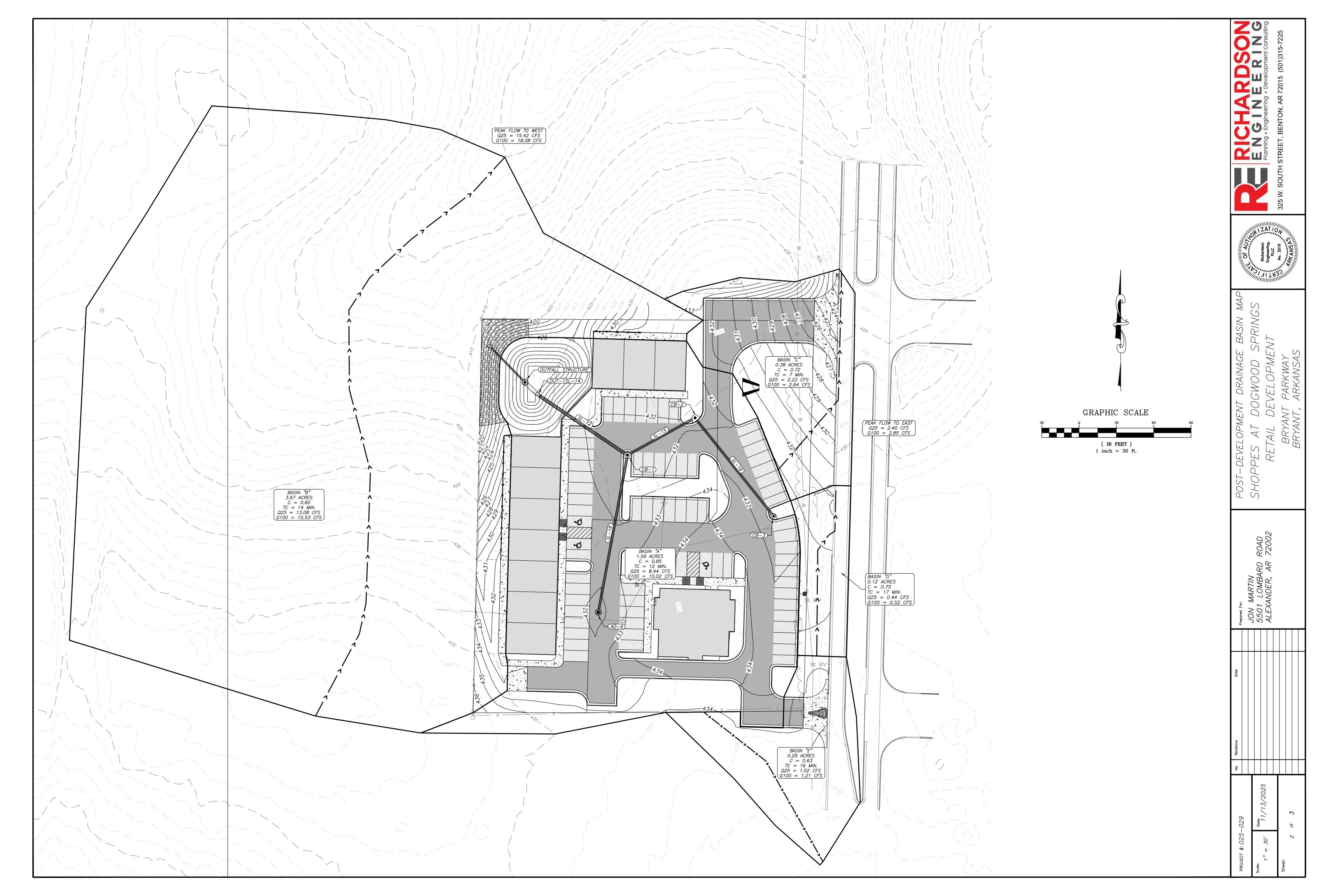
Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.

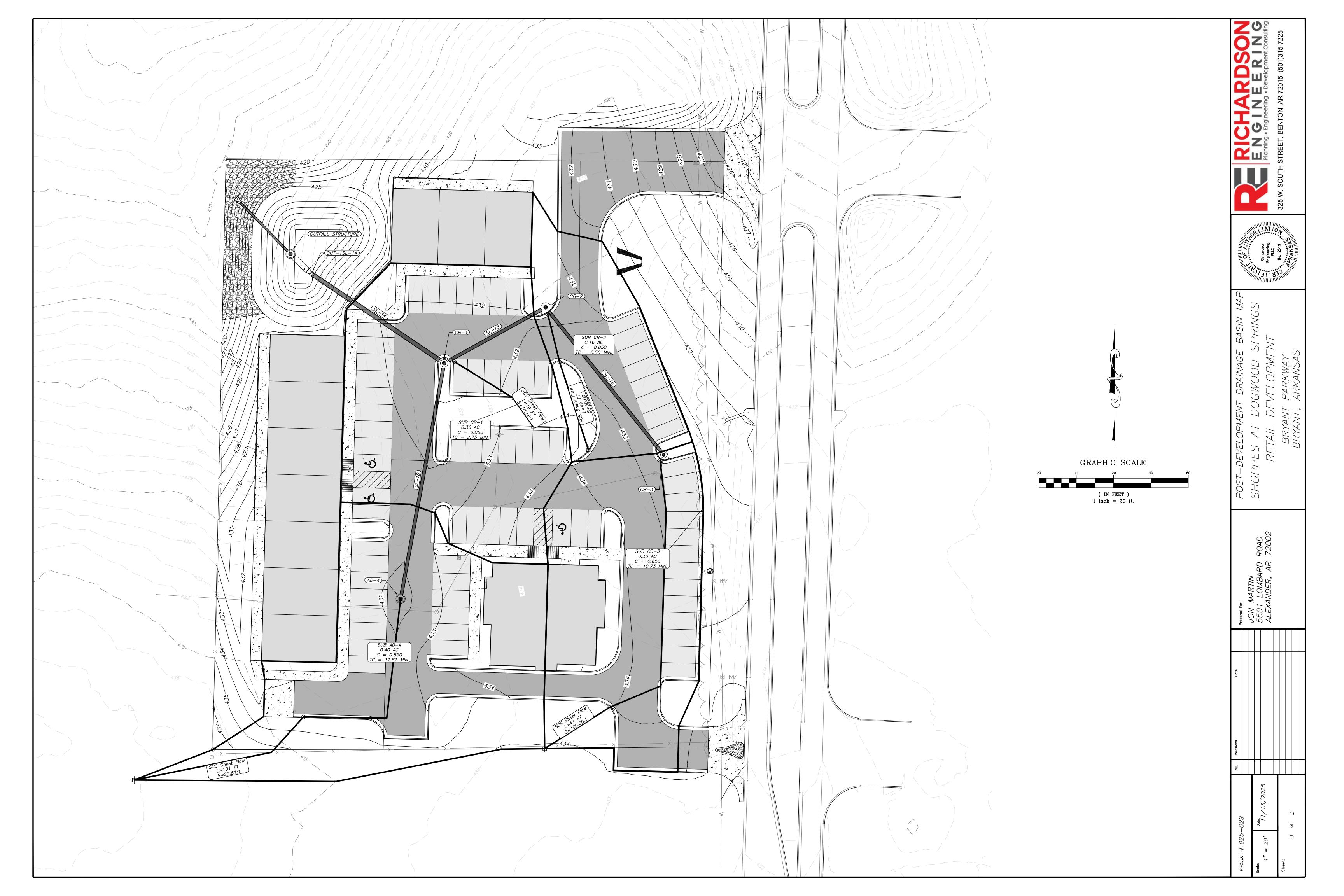
This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

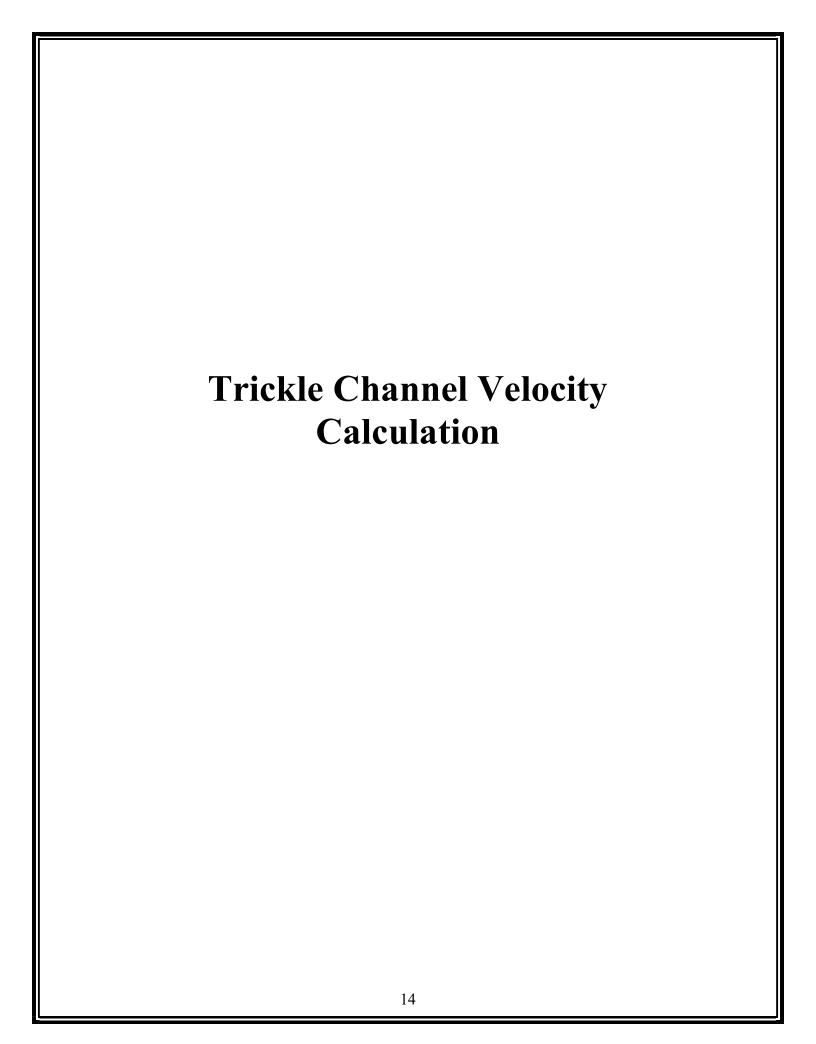
Soil Survey Area: Saline County, Arkansas Survey Area Data: Version 21, Sep 10, 2024

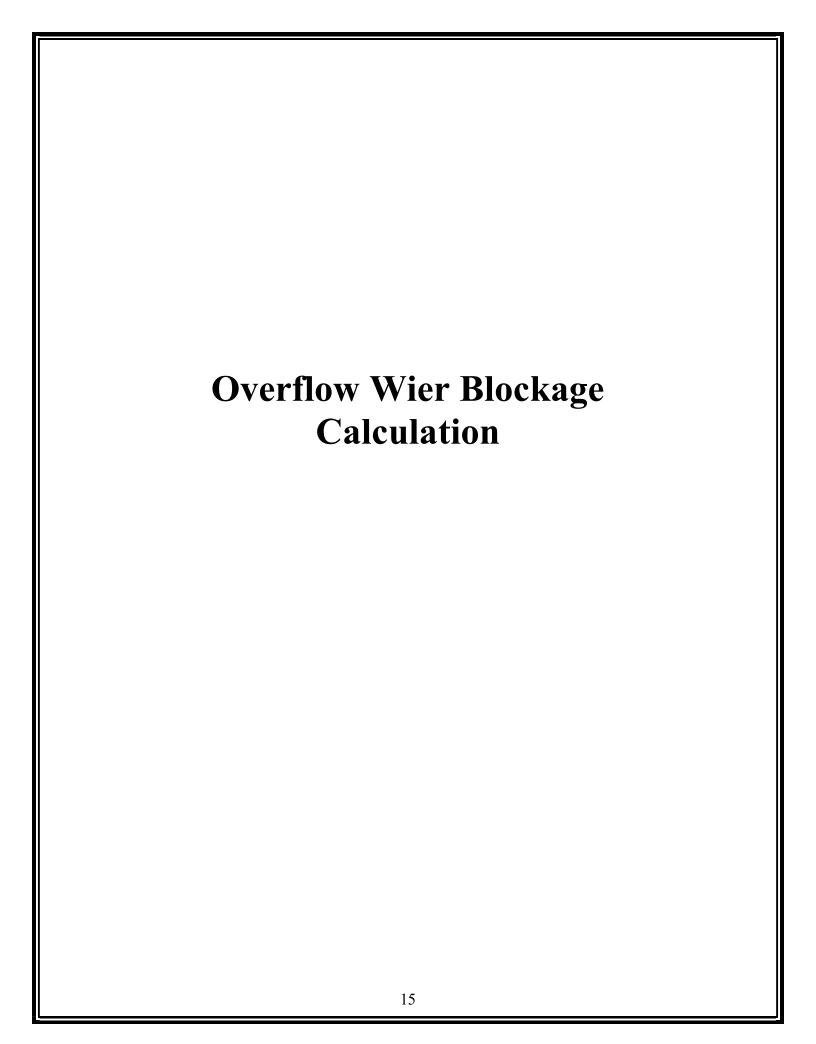

Soil map units are labeled (as space allows) for map scales 1:50.000 or larger.

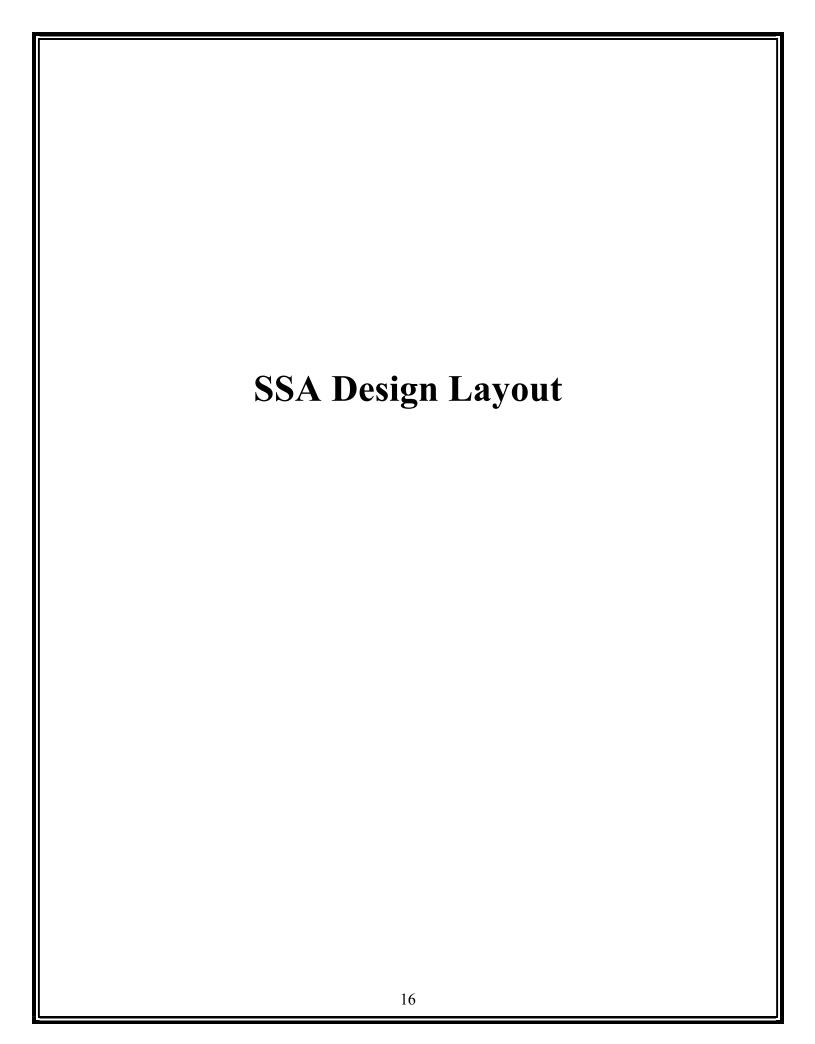

Date(s) aerial images were photographed: May 1, 2022—May 29, 2022


The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

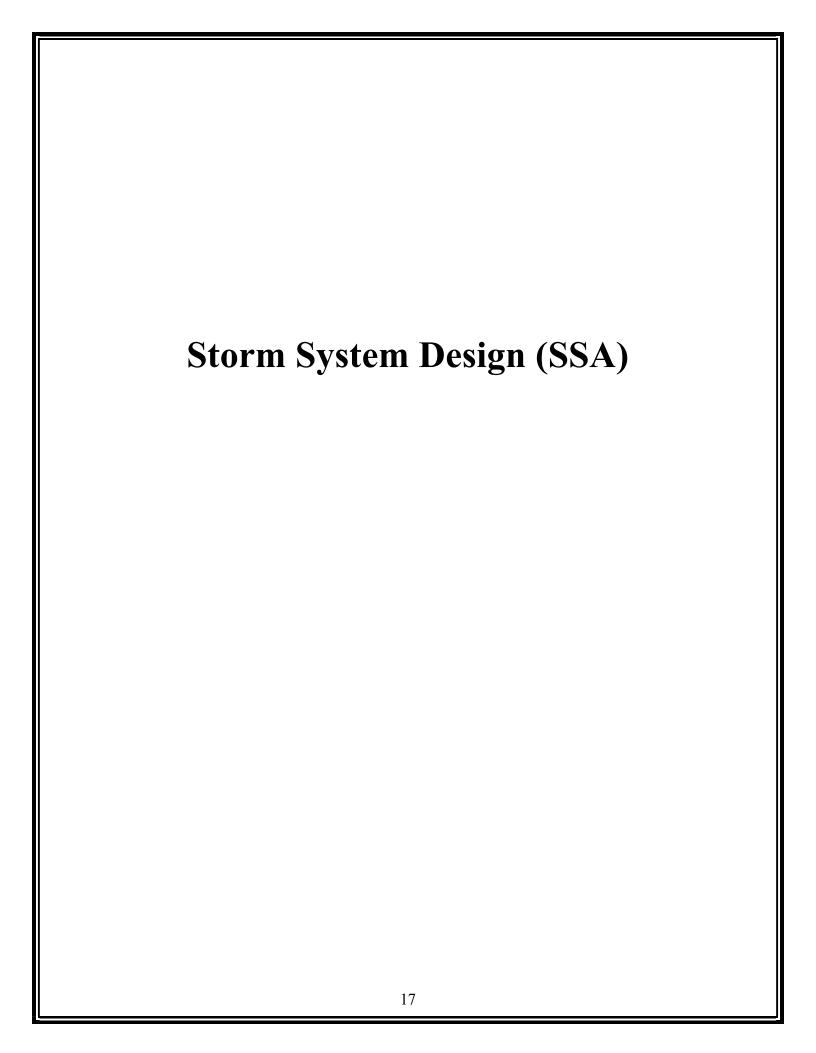

Map Unit Legend

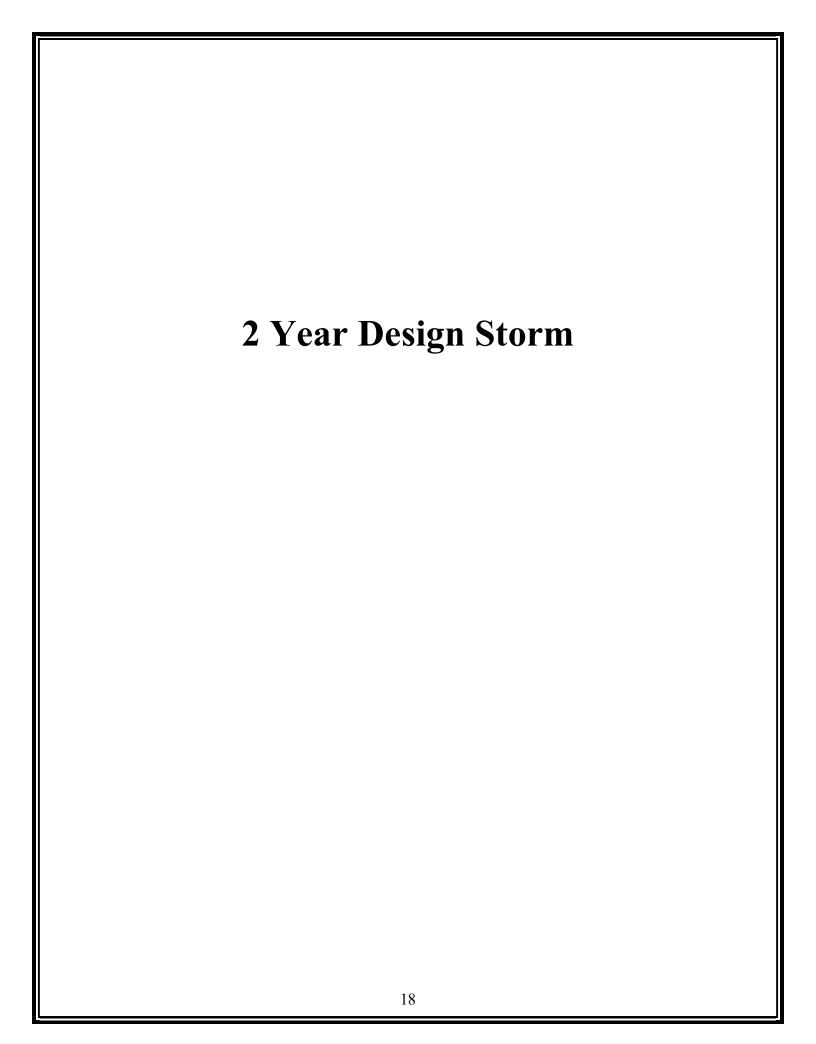

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
29	Tiak silt loam, 3 to 8 percent slopes	2.4	100.0%
Totals for Area of Interest		2.4	100.0%




(1/1)

PROJECT 025-029 TRAKE CHANNEL VELOCITY DATE 11/05/2025 0.03 K-16" -31 S= 0.2 = 0.02 F7/F7 A= 0.045 FT2 Wp = 0.16 FT Q = (1.49) (0.045) (0.045) (0.02) = 0.313 cFs V: Q = (0.313 = 6.75 FI/S > 2 FI/S V




PROJECT 025-029 DUEN FLOW RISER WEIR CALCULATION DATE 11/05/2025 4' 1.D. ROUND BARREL RISER 15 424.50 424.0 1 423.0 10" 1 1///// 5" 421.50 INSIDE 16"1 BARREL 10" 4/18.8 TOP VIEW Q = CLH3/2 C = 2.6 L = 2 M R = (2)(N)(2) = 12.56 H : d.o' Q = (2.6)(12.56)(10) = 32.65 cfs : ASSUMING THAT SOL. OF THE WIER IS BLOCKED Q= 32.65 = 16.33 CF5 > Q100 INT BND = 15.96 CFS /

PROJECT 025-029 SSA DESIGN LAYOUT DATE 11/05/2025 POND LOUT - 15L-14 (B-2 SAG SL-15 CB-1 BY- PASS SAG LINK SUB SUB (13-1 13-2 * ALL WATER NOT INTERCEPTED BY (2-3 15 PILKED UP BY CB-2 CB-3 GRA DE SUB CB-3 A13-4 546 548 40-4

Project Description

File Name Bryant Pharmacy Drainage Analysis 11-13-25.SPF

Project Options

 Flow Units
 CFS

 Elevation Type
 Elevation

 Hydrology Method
 Rational

 Time of Concentration (TOC) Method
 SCS TR-55

 Link Routing Method
 Kinematic Wave

 Enable Overflow Ponding at Nodes
 YES

 Skip Steady State Analysis Time Periods
 NO

Analysis Options

Start Analysis On	00:00:00	0:00:00
End Analysis On	00:00:00	0:00:00
Start Reporting On	00:00:00	0:00:00
Antecedent Dry Days	0	days
Runoff (Dry Weather) Time Step	0 01:00:00	days hh:mm:ss
Runoff (Wet Weather) Time Step	0 00:05:00	days hh:mm:ss
Reporting Time Step	0 00:05:00	days hh:mm:ss
Routing Time Step	30	seconds

Number of Elements

Rain Gages 0 Junctions 0 Flow Diversions 0 Storage Nodes 0 Channels 0 Pumps 0 *Weirs* 0 Outlets 0 Pollutants 0 Land Uses 0

Rainfall Details

Return Period 2 year(s)

Subbasin Summary

Time of	Peak	Total	Total	Total	Weighted	Area	SN Subbasin
Concentration	Runoff	Runoff	Runoff	Rainfall	Runoff		ID
		Volume			Coefficient		
(days hh:mm:ss)	(cfs)	(ac-in)	(in)	(in)		(ac)	
0 00:11:45	1.40	0.28	0.69	0.81	0.8500	0.40	1 SUB-AD-4
0 00:02:40	2.32	0.10	0.29	0.34	0.8500	0.36	2 Sub-CB-1
0 00:08:30	0.65	0.09	0.58	0.68	0.8500	0.16	3 Sub-CB-2
0 00:10:43	1.09	0.19	0.65	0.76	0.8500	0.30	4 Sub-CB-3

Node Summary

SN	Element	Element	Invert	Ground/Rim	Initial	Surcharge	Ponded	Peak	Max HGL	Max	Min
	ID	Туре	Elevation	(Max)	Water	Elevation	Area	Inflow	Elevation	Surcharge	Freeboard
				Elevation	Elevation				Attained	Depth	Attained
										Attained	
			(ft)	(ft)	(ft)	(ft)	(ft²)	(cfs)	(ft)	(ft)	(ft)
1	Out-1SL - (14)	Outfall	419.00					2.96	419.38		

Link Summary

SN Element	Element	From	To (Outlet)	Length	Inlet	Outlet	Average	Diameter or	Manning's	Peak	Design Flow	Peak Flow/	Peak Flow	Peak Flow	Peak Flow	To
ID	Туре	(Inlet)	Node		Invert	Invert	Slope	Height	Roughness	Flow	Capacity	Design Flow	Velocity	Depth	Depth/	Sur
		Node			Elevation	Elevation						Ratio			Total Depth	
															Ratio	
				(ft)	(ft)	(ft)	(%)	(in)		(cfs)	(cfs)		(ft/sec)	(ft)		
1 L-SL - (16)	Pipe	CB-3	CB-2	112.54	433.11	432.25	0.7600			0.00	0.00	0.00	0.00	0.00	0.00	
2 SL - (14)	Pipe	CB-1	Out-1SL - (14)	85.23	422.00	419.00	3.5200			2.96	21.35	0.14	8.53	0.38	0.25	
3 SL - (15)	Pipe	CB-2	CB-1	62.02	426.00	422.00	6.4500			1.57	28.90	0.05	8.74	0.24	0.16	
4 SL - (16)	Pipe	CB-3	CB-2	101.17	429.00	426.00	2.9700			1.08	19.60	0.06	7.03	0.24	0.16	
5 SL - (18)	Pipe	AD-4	CB-1	128.37	427.50	423.00	3.5100			1.39	21.31	0.07	7.05	0.26	0.17	

Inlet Summary

SN Elemen	t Inlet	Number of	Catchbasin	Max (Rim)	Initial	Ponded	Peak	Peak Flow	Peak Flow	Inlet	Allowable	Max Gutter	Max Gutter
ID	Location	Inlets	Invert	Elevation	Water	Area	Flow	Intercepted	Bypassing	Efficiency	Spread	Spread	Water Elev.
			Elevation		Elevation			by	Inlet	during Peak		during Peak	during Peak
								Inlet		Flow		Flow	Flow
			(ft)	(ft)	(ft)	(ft²)	(cfs)	(cfs)	(cfs)	(%)	(ft)	(ft)	(ft)
1 AD-4	On Sag	1	427.50	431.80	427.50	10.00	1.40	N/A	N/A	N/A	10.00	7.06	432.11
2 CB-1	On Sag	1	422.00	431.61	422.00	10.00	2.32	N/A	N/A	N/A	10.00	5.35	432.02
3 CB-2	On Sag	1	426.00	432.25	426.00	10.00	0.65	N/A	N/A	N/A	10.00	2.29	432.57
4 CB-3	On Grade	1	429.00	433.11	429.00	N/A	1.09	1.09	0.00	100.00	10.00	5.09	433.25

Subbasin Hydrology

Subbasin: SUB-AD-4

Input Data

Area (ac)	0.4
Weighted Runoff Coefficient	0.85

Time of Concentration

TOC Method : SCS TR-55

Sheet Flow Equation :

 $Tc = (0.007 * ((n * Lf)^0.8)) / ((P^0.5) * (Sf^0.4))$

Where:

- Tc = Time of Concentration (hr)
- n = Manning's roughness
- Lf = Flow Length (ft)
- P = 2 yr, 24 hr Rainfall (inches)
- Sf = Slope (ft/ft)

Shallow Concentrated Flow Equation :

- V = 16.1345 * (Sf^0.5) (unpaved surface)
- V = 20.3282 * (Sf^0.5) (paved surface)
- V = 15.0 * (Sf^0.5) (grassed waterway surface)
- V = 10.0 * (Sf^0.5) (nearly bare & untilled surface)
- V = 9.0 * (Sf^0.5) (cultivated straight rows surface)
- V = 7.0 * (Sf^0.5) (short grass pasture surface)
- V = 5.0 * (Sf^0.5) (woodland surface)
- V = 2.5 * (Sf^0.5) (forest w/heavy litter surface)
- Tc = (Lf / V) / (3600 sec/hr)

Where:

- Tc = Time of Concentration (hr)
- Lf = Flow Length (ft)
- V = Velocity (ft/sec)
- Sf = Slope (ft/ft)

Channel Flow Equation :

- $V = (1.49 * (R^{(2/3)}) * (Sf^{(0.5)}) / n$
- R = Aq / Wp
- Tc = (Lf / V) / (3600 sec/hr)

	Subarea	Subarea	Subarea
Sheet Flow Computations	Α	В	С
Manning's Roughness:	0.3	0	0
Flow Length (ft):	100	0	0
Slope (%):	4.2	0	0
2 yr, 24 hr Rainfall (in):	4.36	0	0
Velocity (ft/sec):	0.15	0	0
Computed Flow Time (min) :	10.86	0	0
	Subarea	Subarea	Subarea
Shallow Concentrated Flow Computations	Α	В	С
Flow Length (ft):	109	0	0
Slope (%):	1	0	0
Surface Type :	Paved	Unpaved	Unpaved
Velocity (ft/sec):	2.03	0	0
Computed Flow Time (min):	0.89	0	0
Total TOC (min)11.76			

Input Data

Area (ac)	0.36
Weighted Runoff Coefficient	0.85

Time of Concentration

	Subarea	Subarea	Subarea
Sheet Flow Computations	Α	В	С
Manning's Roughness:	0.3	0	0
Flow Length (ft):	18.76	0	0
Slope (%):	5.5	0	0
2 yr, 24 hr Rainfall (in) :	4.6	0	0
Velocity (ft/sec):	0.13	0	0
Computed Flow Time (min) :	2.49	0	0

Shallow Concentrated Flow Computations	Subarea A	Subarea B	Subarea C
Flow Length (ft):	36.8	0	0
Slope (%):	2.5	0	0
Surface Type :	Paved	Paved	Paved
Velocity (ft/sec):	3.21	0	0
Computed Flow Time (min):	0.19	0	0
Total TOC (min)2.68			

Input Data

Area (ac)	0.16
Weighted Runoff Coefficient	0.85

Time of Concentration

	Subarea	Subarea	Subarea
Sheet Flow Computations	Α	В	С
Manning's Roughness:	0.3	0	0
Flow Length (ft):	49.44	0	0
Slope (%):	2	0	0
2 yr, 24 hr Rainfall (in) :	4.36	0	0
Velocity (ft/sec):	0.1	0	0
Computed Flow Time (min) :	8.32	0	0
	Subarea	Subarea	Subarea

Shallow Concentrated Flow Computations	Α	В	С
Flow Length (ft):	26.44	0	0
Slope (%):	1.5	0	0
Surface Type :	Paved	Paved	Paved
Velocity (ft/sec):	2.49	0	0
Computed Flow Time (min) :	0.18	0	0
Total TOC (min)8.50			

Input Data

Area (ac)	0.3
Weighted Runoff Coefficient	0.85

Time of Concentration

Computed Flow Time (min):
Total TOC (min)10.73

	Subarea	Subarea	Subarea
Sheet Flow Computations	Α	В	С
Manning's Roughness:	0.3	0	0
Flow Length (ft):	41.23	0	0
Slope (%):	1	0	0
2 yr, 24 hr Rainfall (in) :	4.36	0	0
Velocity (ft/sec):	0.07	0	0
Computed Flow Time (min) :	9.49	0	0
	Subarea	Subarea	Subarea
Shallow Concentrated Flow Computations	Α	В	С
Flow Length (ft):	150.58	0	0
Slope (%):	1	0	0
Surface Type :	Paved	Paved	Paved
Velocity (ft/sec):	2.03	0	0

0

0

1.24

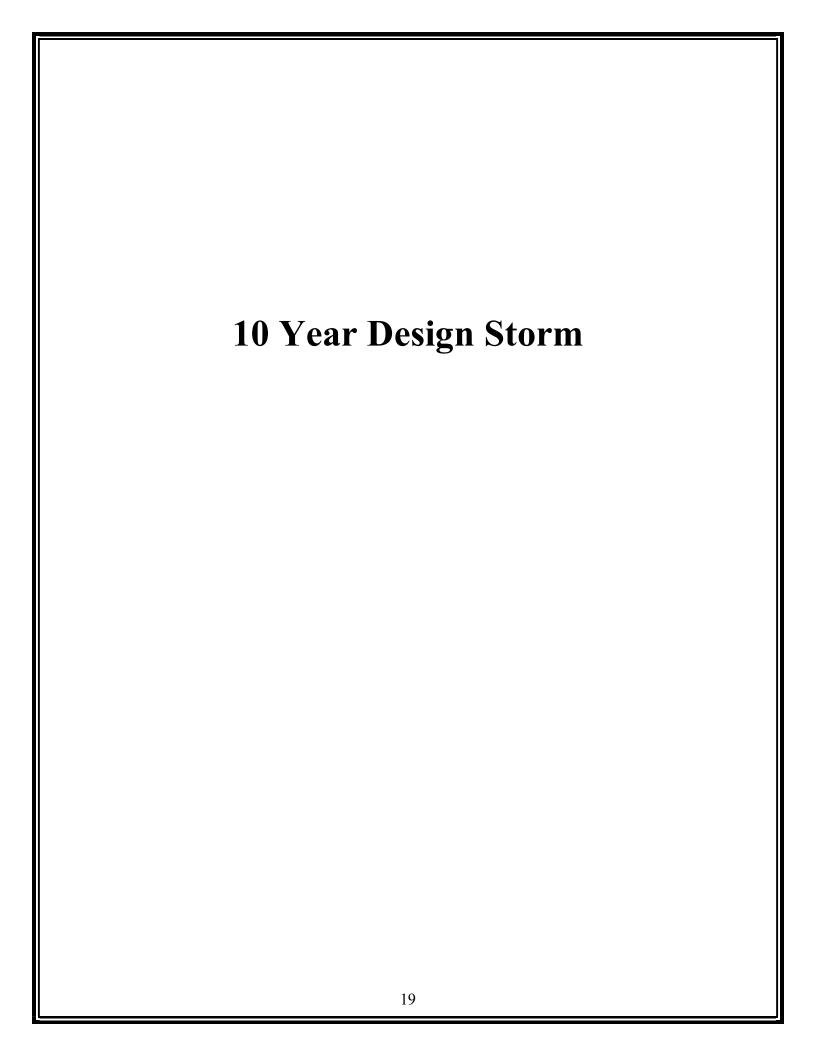
Pipe Input

SN Element	Length	Inlet	Inlet	Outlet	Outlet	Total	Average Pipe	Pipe	Pipe	Manning's	Entr
ID		Invert	Invert	Invert	Invert	Drop	Slope Shape	Diameter or	Width	Roughness	Lc
		Elevation	Offset	Elevation	Offset			Height			
	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(%)	(in)	(in)		
1 L-SL - (16)	112.54	433.11	4.11	432.25	6.25	0.86	0.7600 Dummy				
2 SL - (14)	85.23	422.00	0.00	419.00	0.00	3.00	3.5200 CIRCULAR				
3 SL - (15)	62.02	426.00	0.00	422.00	0.00	4.00	6.4500 CIRCULAR				
4 SL - (16)	101.17	429.00	0.00	426.00	0.00	3.00	2.9700 CIRCULAR				
5 SL - (18)	128.37	427.50	0.00	423.00	1.00	4.50	3.5100 CIRCULAR				

Pipe Results

SN Element	Peak	Time of	Design Flow	Peak Flow/	Peak Flow	Travel	Peak Flow	Peak Flow	Total Time	Frou
ID	Flow	Peak Flow	Capacity	Design Flow	Velocity	Time	Depth	Depth/	Surcharged	Numt
		Occurrence		Ratio				Total Depth		
								Ratio		
	(cfs)	(days hh:mm)	(cfs)		(ft/sec)	(min)	(ft)		(min)	
1 L-SL - (16)	0.00	0 00:10	0.00	0.00	0.00		0.00	0.00	0.00	
2 SL - (14)	2.96	0 00:02	21.35	0.14	8.53	0.17	0.38	0.25	0.00	
3 SL - (15)	1.57	0 00:11	28.90	0.05	8.74	0.12	0.24	0.16	0.00	
4 SL - (16)	1.08	0 00:10	19.60	0.06	7.03	0.24	0.24	0.16	0.00	
5 SL - (18)	1.39	0 00:12	21.31	0.07	7.05	0.30	0.26	0.17	0.00	

Inlet Input


SN Element	Inlet	Number of	Catchbasin	Max (Rim)	Inlet	Initial	Initial	Ponded	Grate
ID	Location	Inlets	Invert	Elevation	Depth	Water	Water	Area	Clogging
			Elevation			Elevation	Depth		Factor
			(ft)	(ft)	(ft)	(ft)	(ft)	(ft²)	(%)
1 AD-4	On Sag	1	427.50	431.80	4.30	427.50	0.00	10.00	0.00
2 CB-1	On Sag	1	422.00	431.61	9.61	422.00	0.00	10.00	0.00
3 CB-2	On Sag	1	426.00	432.25	6.25	426.00	0.00	10.00	0.00
4 CB-3	On Grade	1	429.00	433.11	4.11	429.00	0.00	N/A	0.00

Roadway & Gutter Input

SN Element	Roadway	Roadway	Roadway	Gutter	Gutter	Gutter	Allowable	
ID	Longitudinal	Cross	Manning's	Cross	Width De	epression	Spread	
	Slope	Slope	Roughness	Slope				
	(ft/ft)	(ft/ft)		(ft/ft)	(ft)	(in)	(ft)	
1 AD-4	N/A	0.0300	0.0150	0.0300	1 50			

Inlet Results

SN Element	Peak	Peak	Peak Flow	Peak Flow	Inlet	Max Gutter	Max Gutter	Max Gutter	Time of	T
ID	Flow	Lateral	Intercepted	Bypassing	Efficiency	Spread	Water Elev.	Water Depth	Max Depth	Floo
		Inflow	by	Inlet	during Peak	during Peak	during Peak	during Peak	Occurrence	Volu
			Inlet		Flow	Flow	Flow	Flow		
	(cfs)	(cfs)	(cfs)	(cfs)	(%)	(ft)	(ft)	(ft)	(days hh:mm)	(ac
1 AD-4	1.40	1.40	N/A	N/A	N/A	7.06	432.11	0.31	0 00:12	(
2 CB-1	2.32	2.32	N/A	N/A	N/A	5.35	432.02	0.41	0 00:12	(
3 CB-2	0.65	0.65	N/A	N/A	N/A	2.29	432.57	0.32	0 00:10	(
4 CB-3	1.09	1.09	1.09	0.00	100.00	5.09	433.25	0.14	0 00:10	(

Project Description

File Name Bryant Pharmacy Drainage Analysis 11-13-25.SPF

Project Options

 Flow Units
 CFS

 Elevation Type
 Elevation

 Hydrology Method
 Rational

 Time of Concentration (TOC) Method
 SCS TR-55

 Link Routing Method
 Kinematic Wave

 Enable Overflow Ponding at Nodes
 YES

 Skip Steady State Analysis Time Periods
 NO

Analysis Options

Start Analysis On	00:00:00	0:00:00
End Analysis On	00:00:00	0:00:00
Start Reporting On	00:00:00	0:00:00
Antecedent Dry Days	0	days
Runoff (Dry Weather) Time Step	0 01:00:00	days hh:mm:ss
Runoff (Wet Weather) Time Step	0 00:05:00	days hh:mm:ss
Reporting Time Step	0 00:05:00	days hh:mm:ss
Routing Time Step	30	seconds

Number of Elements

	Qty
Rain Gages	0
Subbasins	4
Nodes	5
Junctions	0
Outfalls	1
Flow Diversions	0
Inlets	4
Storage Nodes	0
Links	5
Channels	0
Pipes	5
Pumps	0
Orifices	0
Weirs	0
Outlets	0
Pollutants	0
Land Uses	0

Rainfall Details

Return Period 10 year(s)

Subbasin Summary

Time of	Peak	Total	Total	Total	Weighted	Area	SN Subbasin	
Concentration	Runoff	Runoff	Runoff	Rainfall	Runoff		ID	
		Volume			Coefficient			
(days hh:mm:ss)	(cfs)	(ac-in)	(in)	(in)		(ac)		
0 00:11:45	1.86	0.37	0.92	1.08	0.8500	0.40	1 SUB-AD-4	
0 00:02:40	3.03	0.13	0.37	0.44	0.8500	0.36	2 Sub-CB-1	
0 00:08:30	0.87	0.12	0.77	0.91	0.8500	0.16	3 Sub-CB-2	
0.00:10:43	1 46	0.26	0.86	1.02	0.8500	0.30	4 Sub-CR-3	

Node Summary

SN	Element	Element	Invert	Ground/Rim	Initial	Surcharge	Ponded	Peak	Max HGL	Max	Min
	ID	Туре	Elevation	(Max)	Water	Elevation	Area	Inflow	Elevation	Surcharge	Freeboard
				Elevation	Elevation				Attained	Depth	Attained
										Attained	
			(ft)	(ft)	(ft)	(ft)	(ft²)	(cfs)	(ft)	(ft)	(ft)
1	Out-1SL - (14)	Outfall	419.00					3.87	419.43		

Link Summary

SN Element	Element	From	To (Outlet)	Length	Inlet	Outlet	Average	Diameter or	Manning's	Peak	Design Flow	Peak Flow/	Peak Flow	Peak Flow	Peak Flow	To
ID	Туре	(Inlet)	Node		Invert	Invert	Slope	Height	Roughness	Flow	Capacity	Design Flow	Velocity	Depth	Depth/	Sur
		Node			Elevation	Elevation						Ratio			Total Depth	
															Ratio	
				(ft)	(ft)	(ft)	(%)	(in)		(cfs)	(cfs)		(ft/sec)	(ft)		
1 L-SL - (16)	Pipe	CB-3	CB-2	112.54	433.11	432.25	0.7600			0.01	0.00	0.00	0.00	0.00	0.00	
2 SL - (14)	Pipe	CB-1	Out-1SL - (14)	85.23	422.00	419.00	3.5200			3.87	21.35	0.18	9.20	0.43	0.29	
3 SL - (15)	Pipe	CB-2	CB-1	62.02	426.00	422.00	6.4500			2.09	28.90	0.07	9.54	0.27	0.18	
4 SL - (16)	Pipe	CB-3	CB-2	101.17	429.00	426.00	2.9700			1.44	19.60	0.07	7.46	0.27	0.18	
5 SL - (18)	Pipe	AD-4	CB-1	128.37	427.50	423.00	3.5100			1.85	21.31	0.09	7.43	0.30	0.20	

Inlet Summary

SN Elemen	Inlet	Number of	Catchbasin	Max (Rim)	Initial	Ponded	Peak	Peak Flow	Peak Flow	Inlet	Allowable	Max Gutter	Max Gutter
ID	Location	Inlets	Invert	Elevation	Water	Area	Flow	Intercepted	Bypassing	Efficiency	Spread	Spread	Water Elev.
			Elevation		Elevation			by	Inlet	during Peak		during Peak	during Peak
								Inlet		Flow		Flow	Flow
			(ft)	(ft)	(ft)	(ft²)	(cfs)	(cfs)	(cfs)	(%)	(ft)	(ft)	(ft)
1 AD-4	On Sag	1	427.50	431.80	427.50	10.00	1.86	N/A	N/A	N/A	10.00	8.34	432.15
2 CB-1	On Sag	1	422.00	431.61	422.00	10.00	3.03	N/A	N/A	N/A	10.00	6.40	432.05
3 CB-2	On Sag	1	426.00	432.25	426.00	10.00	0.87	N/A	N/A	N/A	10.00	2.79	432.59
4 CB-3	On Grade	1	429.00	433.11	429.00	N/A	1.46	1.45	0.01	99.52	10.00	5.64	433.26

Subbasin Hydrology

Subbasin: SUB-AD-4

Input Data

Area (ac)	0.4
Weighted Runoff Coefficient	0.85

Time of Concentration

TOC Method : SCS TR-55

Sheet Flow Equation :

 $Tc = (0.007 * ((n * Lf)^0.8)) / ((P^0.5) * (Sf^0.4))$

Where:

- Tc = Time of Concentration (hr)
- n = Manning's roughness
- Lf = Flow Length (ft)
- P = 2 yr, 24 hr Rainfall (inches)
- Sf = Slope (ft/ft)

Shallow Concentrated Flow Equation :

- V = 16.1345 * (Sf^0.5) (unpaved surface)
- V = 20.3282 * (Sf^0.5) (paved surface)
- V = 15.0 * (Sf^0.5) (grassed waterway surface)
- V = 10.0 * (Sf^0.5) (nearly bare & untilled surface)
- V = 9.0 * (Sf^0.5) (cultivated straight rows surface)
- V = 7.0 * (Sf^0.5) (short grass pasture surface)
- $V = 5.0 * (Sf^0.5)$ (woodland surface)
- V = 2.5 * (Sf^0.5) (forest w/heavy litter surface)
- Tc = (Lf / V) / (3600 sec/hr)

Where:

- Tc = Time of Concentration (hr)
- Lf = Flow Length (ft)
- V = Velocity (ft/sec)
- Sf = Slope (ft/ft)

Channel Flow Equation :

- V = (1.49 * (R^(2/3)) * (Sf^0.5)) / n
- R = Aq / Wp
- Tc = (Lf / V) / (3600 sec/hr)

	Subarea	Subarea	Subarea
Sheet Flow Computations	Α	В	С
Manning's Roughness:	0.3	0	0
Flow Length (ft):	100	0	0
Slope (%):	4.2	0	0
2 yr, 24 hr Rainfall (in):	4.36	0	0
Velocity (ft/sec):	0.15	0	0
Computed Flow Time (min) :	10.86	0	0
	Subarea	Subarea	Subarea
Shallow Concentrated Flow Computations	Α	В	С
Flow Length (ft):	109	0	0
Slope (%):	1	0	0
Surface Type :	Paved	Unpaved	Unpaved
Velocity (ft/sec):	2.03	0	0
Computed Flow Time (min):	0.89	0	0
Total TOC (min)11.76			

Input Data

Area (ac)	0.36
Weighted Runoff Coefficient	0.85

Time of Concentration

	Subarea	Subarea	Subarea
Sheet Flow Computations	Α	В	С
Manning's Roughness :	0.3	0	0
Flow Length (ft):	18.76	0	0
Slope (%):	5.5	0	0
2 yr, 24 hr Rainfall (in) :	4.6	0	0
Velocity (ft/sec):	0.13	0	0
Computed Flow Time (min):	2.49	0	0
	Subarea	Subarea	Subarea

Shallow Concentrated Flow Computations	Α	В	С
Flow Length (ft):	36.8	0	0
Slope (%):	2.5	0	0
Surface Type :	Paved	Paved	Paved
Velocity (ft/sec) :	3.21	0	0
Computed Flow Time (min):	0.19	0	0
Total TOC (min)2.68			

Input Data

Area (ac)	0.16
Weighted Runoff Coefficient	0.85

Time of Concentration

	Subarea	Subarea	Subarea
Sheet Flow Computations	Α	В	С
Manning's Roughness :	0.3	0	0
Flow Length (ft):	49.44	0	0
Slope (%):	2	0	0
2 yr, 24 hr Rainfall (in) :	4.36	0	0
Velocity (ft/sec):	0.1	0	0
Computed Flow Time (min) :	8.32	0	0

Shallow Concentrated Flow Computations	Subarea A	Subarea B	Subarea C
Flow Length (ft):	26.44	0	0
Slope (%):	1.5	0	0
Surface Type :	Paved	Paved	Paved
Velocity (ft/sec):	2.49	0	0
Computed Flow Time (min):	0.18	0	0
Total TOC (min)8.50			

Input Data

Area (ac)	0.3
Weighted Runoff Coefficient	0.85

Time of Concentration

Computed Flow Time (min):
Total TOC (min)10.73

	Subarea	Subarea	Subarea
Sheet Flow Computations	Α	В	С
Manning's Roughness:	0.3	0	0
Flow Length (ft):	41.23	0	0
Slope (%):	1	0	0
2 yr, 24 hr Rainfall (in) :	4.36	0	0
Velocity (ft/sec):	0.07	0	0
Computed Flow Time (min) :	9.49	0	0
	Subarea	Subarea	Subarea
Shallow Concentrated Flow Computations	Α	В	С
Flow Length (ft):	150.58	0	0
Slope (%):	1	0	0
Surface Type :	Paved	Paved	Paved
Velocity (ft/sec):	2.03	0	0

0

0

1.24

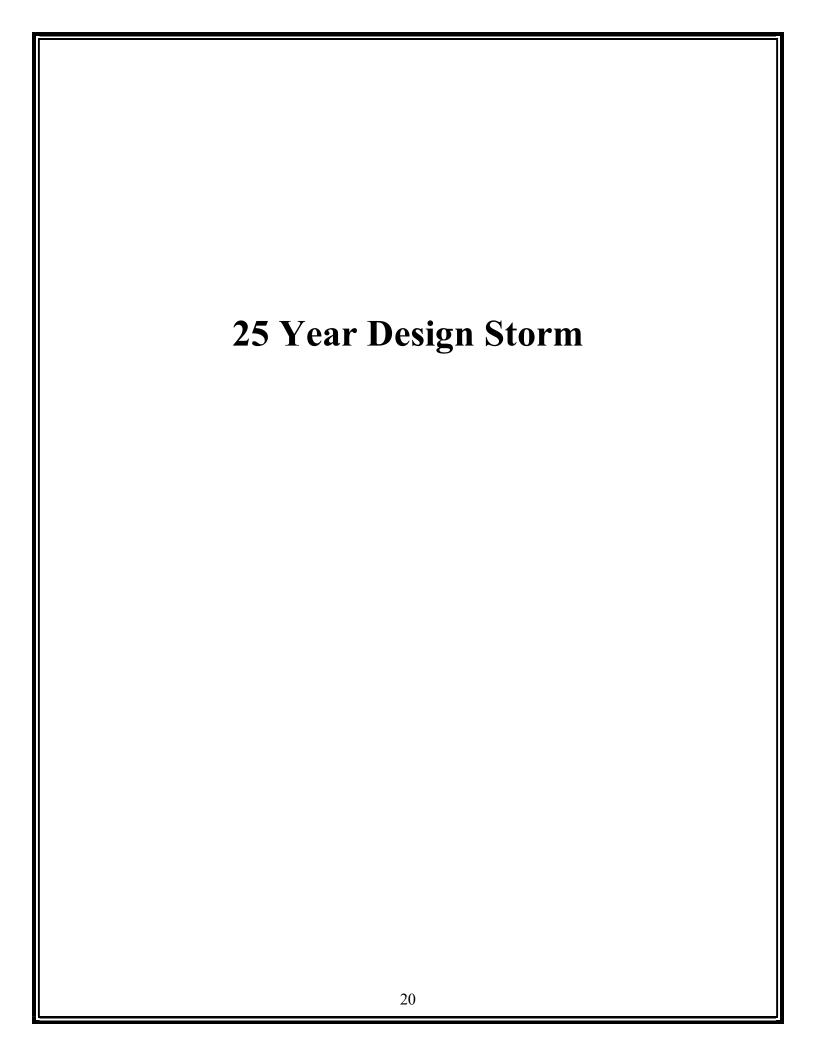
Pipe Input

S	N Element	Length	Inlet	Inlet	Outlet	Outlet	Total	Average	Pipe	Pipe	Pipe	Manning's	Entr
	ID		Invert	Invert	Invert	Invert	Drop	Slope	Shape	Diameter or	Width	Roughness	Lc
			Elevation	Offset	Elevation	Offset				Height			
		(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(%)		(in)	(in)		
	1 L-SL - (16)	112.54	433.11	4.11	432.25	6.25	0.86	0.7600	Dummy				
	2 SL - (14)	85.23	422.00	0.00	419.00	0.00	3.00	3.5200	CIRCULAR				
	3 SL - (15)	62.02	426.00	0.00	422.00	0.00	4.00	6.4500	CIRCULAR				
	4 SL - (16)	101.17	429.00	0.00	426.00	0.00	3.00	2.9700	CIRCULAR				
	5 SL - (18)	128.37	427.50	0.00	423.00	1.00	4.50	3.5100	CIRCULAR				

Pipe Results

SN Element	Peak	Time of	Design Flow	Peak Flow/	Peak Flow	Travel	Peak Flow	Peak Flow	Total Time	Frou
ID	Flow	Peak Flow	Capacity	Design Flow	Velocity	Time	Depth	Depth/	Surcharged	Numb
		Occurrence		Ratio				Total Depth		
								Ratio		
	(cfs)	(days hh:mm)	(cfs)		(ft/sec)	(min)	(ft)		(min)	
1 L-SL - (16)	0.01	0 00:10	0.00	0.00	0.00		0.00	0.00	0.00	
2 SL - (14)	3.87	0 00:02	21.35	0.18	9.20	0.15	0.43	0.29	0.00	
3 SL - (15)	2.09	0 00:10	28.90	0.07	9.54	0.11	0.27	0.18	0.00	
4 SL - (16)	1.44	0 00:10	19.60	0.07	7.46	0.23	0.27	0.18	0.00	
5 SL - (18)	1.85	0 00:12	21.31	0.09	7.43	0.29	0.30	0.20	0.00	

Inlet Input


SN Element	Inlet	Number of	Catchbasin	Max (Rim)	Inlet	Initial	Initial	Ponded	Grate
ID	Location	Inlets	Invert	Elevation	Depth	Water	Water	Area	Clogging
			Elevation			Elevation	Depth		Factor
			(ft)	(ft)	(ft)	(ft)	(ft)	(ft²)	(%)
1 AD-4	On Sag	1	427.50	431.80	4.30	427.50	0.00	10.00	0.00
2 CB-1	On Sag	1	422.00	431.61	9.61	422.00	0.00	10.00	0.00
3 CB-2	On Sag	1	426.00	432.25	6.25	426.00	0.00	10.00	0.00
4 CB-3	On Grade	1	429.00	433.11	4.11	429.00	0.00	N/A	0.00

Roadway & Gutter Input

SN Element	Roadway	Roadway	Roadway	Gutter	Gutter	Gutter	Allowable	
ID	Longitudinal	Cross	Manning's	Cross	Width De	epression	Spread	
	Slope	Slope	Roughness	Slope				
	(ft/ft)	(ft/ft)		(ft/ft)	(ft)	(in)	(ft)	
1 AD-4	N/A	0.0300	0.0150	0.0300	1 50			

Inlet Results

SN Element	Peak	Peak	Peak Flow	Peak Flow	Inlet	Max Gutter	Max Gutter	Max Gutter	Time of	T
ID	Flow	Lateral	Intercepted	Bypassing	Efficiency	Spread	Water Elev.	Water Depth	Max Depth	Floo
		Inflow	by	Inlet	during Peak	during Peak	during Peak	during Peak	Occurrence	Volu
			Inlet		Flow	Flow	Flow	Flow		
	(cfs)	(cfs)	(cfs)	(cfs)	(%)	(ft)	(ft)	(ft)	(days hh:mm)	(ac
1 AD-4	1.86	1.86	N/A	N/A	N/A	8.34	432.15	0.35	0 00:12	(
2 CB-1	3.03	3.03	N/A	N/A	N/A	6.40	432.05	0.44	0 00:12	(
3 CB-2	0.87	0.87	N/A	N/A	N/A	2.79	432.59	0.33	0 00:10	(
4 CB-3	1.46	1.46	1.45	0.01	99.52	5.64	433.26	0.15	0 00:10	(

Project Description

File Name Bryant Pharmacy Drainage Analysis 11-13-25.SPF

Project Options

 Flow Units
 CFS

 Elevation Type
 Elevation

 Hydrology Method
 Rational

 Time of Concentration (TOC) Method
 SCS TR-55

 Link Routing Method
 Kinematic Wave

 Enable Overflow Ponding at Nodes
 YES

 Skip Steady State Analysis Time Periods
 NO

Analysis Options

Start Analysis On	00:00:00	0:00:00
End Analysis On	00:00:00	0:00:00
Start Reporting On	00:00:00	0:00:00
Antecedent Dry Days	0	days
Runoff (Dry Weather) Time Step	0 01:00:00	days hh:mm:ss
Runoff (Wet Weather) Time Step	0 00:05:00	days hh:mm:ss
Reporting Time Step	0 00:05:00	days hh:mm:ss
Routing Time Step	30	seconds

Number of Elements

	Qty
Rain Gages	0
Subbasins	4
Nodes	5
Junctions	0
Outfalls	1
Flow Diversions	0
Inlets	4
Storage Nodes	0
Links	5
Channels	0
Pipes	5
Pumps	0
Orifices	0
Weirs	0
Outlets	0
Pollutants	0
Land Uses	0

Rainfall Details

Return Period 25 year(s)

Subbasin Summary

SN Subbasin	Area	Weighted	Total	Total	Total	Peak	Time of
ID		Runoff	Rainfall	Runoff	Runoff	Runoff	Concentration
		Coefficient			Volume		
	(ac)		(in)	(in)	(ac-in)	(cfs)	(days hh:mm:ss)
1 SUB-AD-4	0.40	0.8500	1.24	1.06	0.42	2.14	0 00:11:45
2 Sub-CB-1	0.36	0.8500	0.51	0.43	0.15	3.48	0 00:02:40
3 Sub-CB-2	0.16	0.8500	1.04	0.88	0.14	1.00	0 00:08:30
4 Sub-CB-3	0.30	0.8500	1.17	0.99	0.30	1.68	0 00:10:43

Node Summary

SN	I Element	Element	Invert	Ground/Rim	Initial	Surcharge	Ponded	Peak	Max HGL	Max	Min
	ID	Type	Elevation	(Max)	Water	Elevation	Area	Inflow	Elevation	Surcharge	Freeboard
				Elevation	Elevation				Attained	Depth	Attained
										Attained	
			(ft)	(ft)	(ft)	(ft)	(ft ²)	(cfs)	(ft)	(ft)	(ft)
	1 Out-1SL - (14)	Outfall	419.00					4.46	419.47		

Link Summary

SN Element	Element	From	To (Outlet)	Length	Inlet	Outlet	Average	Diameter or	Manning's	Peak	Design Flow	Peak Flow/	Peak Flow	Peak Flow	Peak Flow	To
ID	Туре	(Inlet)	Node		Invert	Invert	Slope	Height	Roughness	Flow	Capacity	Design Flow	Velocity	Depth	Depth/	Sur
		Node			Elevation	Elevation						Ratio			Total Depth	
															Ratio	
				(ft)	(ft)	(ft)	(%)	(in)		(cfs)	(cfs)		(ft/sec)	(ft)		
1 L-SL - (16)	Pipe	CB-3	CB-2	112.54	433.11	432.25	0.7600			0.05	0.00	0.00	0.00	0.00	0.00	
2 SL - (14)	Pipe	CB-1	Out-1SL - (14)	85.23	422.00	419.00	3.5200			4.46	21.35	0.21	9.59	0.46	0.31	
3 SL - (15)	Pipe	CB-2	CB-1	62.02	426.00	422.00	6.4500			2.41	28.90	0.08	9.93	0.29	0.20	
4 SL - (16)	Pipe	CB-3	CB-2	101.17	429.00	426.00	2.9700			1.62	19.60	0.08	7.68	0.29	0.19	
5 SL - (18)	Pipe	AD-4	CB-1	128.37	427.50	423.00	3.5100			2.13	21.31	0.10	7.74	0.32	0.21	

Inlet Summary

SN Element	Inlet	Number of	Catchbasin	Max (Rim)	Initial	Ponded	Peak	Peak Flow	Peak Flow	Inlet	Allowable	Max Gutter	Max Gutter
ID	Location	Inlets	Invert	Elevation	Water	Area	Flow	Intercepted	Bypassing	Efficiency	Spread	Spread	Water Elev.
			Elevation		Elevation			by	Inlet	during Peak		during Peak	during Peak
								Inlet		Flow		Flow	Flow
			(ft)	(ft)	(ft)	(ft²)	(cfs)	(cfs)	(cfs)	(%)	(ft)	(ft)	(ft)
1 AD-4	On Sag	1	427.50	431.80	427.50	10.00	2.14	N/A	N/A	N/A	10.00	9.05	432.17
2 CB-1	On Sag	1	422.00	431.61	422.00	10.00	3.48	N/A	N/A	N/A	10.00	7.02	432.07
3 CB-2	On Sag	1	426.00	432.25	426.00	10.00	1.01	N/A	N/A	N/A	10.00	3.07	432.59
4 CB-3	On Grade	1	429.00	433.11	429.00	N/A	1.68	1.64	0.04	97.79	10.00	5.91	433.27

Subbasin Hydrology

Subbasin: SUB-AD-4

Input Data

Area (ac)	0.4
Weighted Runoff Coefficient	0.85

Time of Concentration

TOC Method : SCS TR-55

Sheet Flow Equation :

 $Tc = (0.007 * ((n * Lf)^0.8)) / ((P^0.5) * (Sf^0.4))$

Where:

- Tc = Time of Concentration (hr)
- n = Manning's roughness
- Lf = Flow Length (ft)
- P = 2 yr, 24 hr Rainfall (inches)
- Sf = Slope (ft/ft)

Shallow Concentrated Flow Equation :

- V = 16.1345 * (Sf^0.5) (unpaved surface)
- V = 20.3282 * (Sf^0.5) (paved surface)
- V = 15.0 * (Sf^0.5) (grassed waterway surface)
- V = 10.0 * (Sf^0.5) (nearly bare & untilled surface)
- V = 9.0 * (Sf^0.5) (cultivated straight rows surface)
- V = 7.0 * (Sf^0.5) (short grass pasture surface)
- V = 5.0 * (Sf^0.5) (woodland surface)
- V = 2.5 * (Sf^0.5) (forest w/heavy litter surface)
- Tc = (Lf / V) / (3600 sec/hr)

Where:

- Tc = Time of Concentration (hr)
- Lf = Flow Length (ft)
- V = Velocity (ft/sec)
- Sf = Slope (ft/ft)

Channel Flow Equation :

- $V = (1.49 * (R^{(2/3)}) * (Sf^{(0.5)}) / n$
- R = Aq / Wp
- Tc = (Lf / V) / (3600 sec/hr)

	Subarea	Subarea	Subarea
Sheet Flow Computations	Α	В	С
Manning's Roughness:	0.3	0	0
Flow Length (ft):	100	0	0
Slope (%):	4.2	0	0
2 yr, 24 hr Rainfall (in):	4.36	0	0
Velocity (ft/sec):	0.15	0	0
Computed Flow Time (min) :	10.86	0	0
	Subarea	Subarea	Subarea
Shallow Concentrated Flow Computations	Α	В	С
Flow Length (ft):	109	0	0
Slope (%):	1	0	0
Surface Type :	Paved	Unpaved	Unpaved
Velocity (ft/sec):	2.03	0	0
Computed Flow Time (min):	0.89	0	0
Total TOC (min)11.76			

Input Data

Area (ac)	0.36
Weighted Runoff Coefficient	0.85

Time of Concentration

	Subarea	Subarea	Subarea
Sheet Flow Computations	Α	В	С
Manning's Roughness:	0.3	0	0
Flow Length (ft):	18.76	0	0
Slope (%):	5.5	0	0
2 yr, 24 hr Rainfall (in) :	4.6	0	0
Velocity (ft/sec):	0.13	0	0
Computed Flow Time (min) :	2.49	0	0

Shallow Concentrated Flow Computations	Subarea A	Subarea B	Subarea C
Flow Length (ft):	36.8	0	0
Slope (%):	2.5	0	0
Surface Type :	Paved	Paved	Paved
Velocity (ft/sec):	3.21	0	0
Computed Flow Time (min):	0.19	0	0
Total TOC (min)2.68			

Input Data

Area (ac)	0.16
Weighted Runoff Coefficient	0.85

Time of Concentration

	Subarea	Subarea	Subarea
Sheet Flow Computations	Α	В	С
Manning's Roughness:	0.3	0	0
Flow Length (ft):	49.44	0	0
Slope (%):	2	0	0
2 yr, 24 hr Rainfall (in) :	4.36	0	0
Velocity (ft/sec):	0.1	0	0
Computed Flow Time (min) :	8.32	0	0
	Subarea	Subarea	Subarea

Shallow Concentrated Flow Computations	Α	В	С
Flow Length (ft):	26.44	0	0
Slope (%):	1.5	0	0
Surface Type :	Paved	Paved	Paved
Velocity (ft/sec):	2.49	0	0
Computed Flow Time (min) :	0.18	0	0
Total TOC (min)8.50			

Input Data

Area (ac)	0.3
Weighted Runoff Coefficient	0.85

Time of Concentration

Computed Flow Time (min):
Total TOC (min)10.73

	Subarea	Subarea	Subarea
Sheet Flow Computations	Α	В	С
Manning's Roughness:	0.3	0	0
Flow Length (ft):	41.23	0	0
Slope (%):	1	0	0
2 yr, 24 hr Rainfall (in) :	4.36	0	0
Velocity (ft/sec):	0.07	0	0
Computed Flow Time (min) :	9.49	0	0
	Subarea	Subarea	Subarea
Shallow Concentrated Flow Computations	Α	В	С
Flow Length (ft):	150.58	0	0
Slope (%):	1	0	0
Surface Type :	Paved	Paved	Paved
Velocity (ft/sec):	2.03	0	0

0

0

1.24

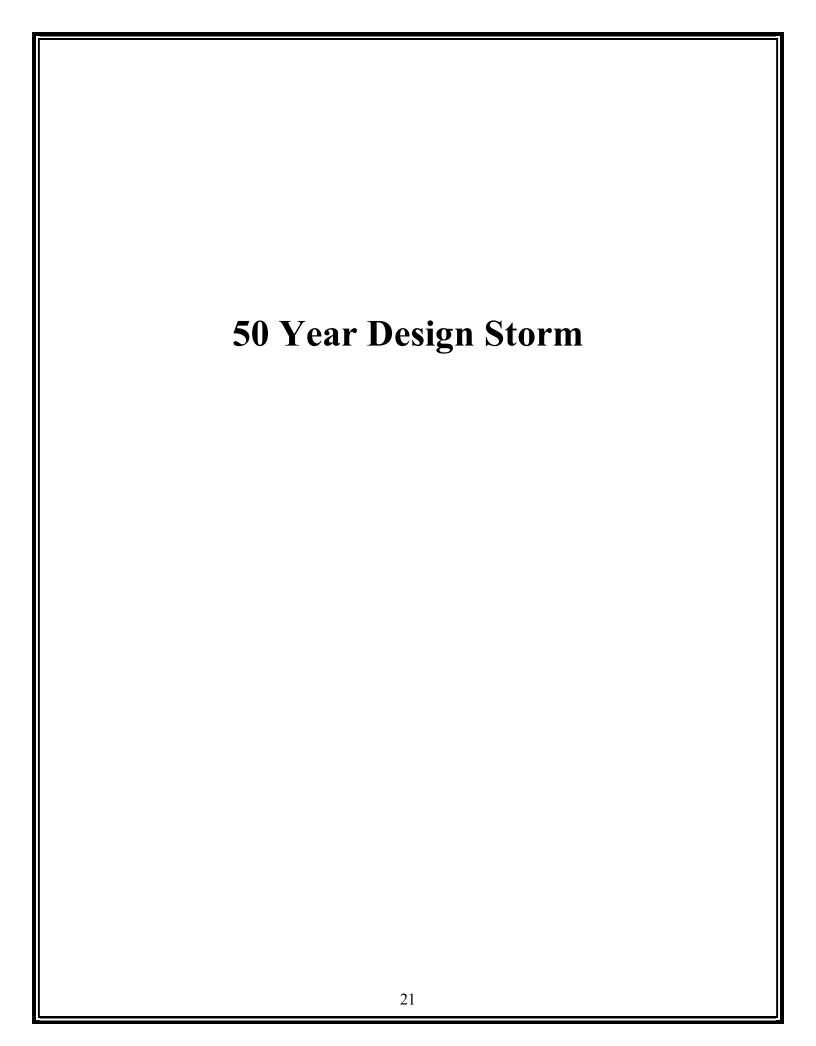
Pipe Input

SN Element	Length	Inlet	Inlet	Outlet	Outlet	Total	Average Pipe	Pipe	Pipe	Manning's	Entr
ID		Invert	Invert	Invert	Invert	Drop	Slope Shape	Diameter or	Width	Roughness	Lc
		Elevation	Offset	Elevation	Offset			Height			
	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(%)	(in)	(in)		
1 L-SL - (16)	112.54	433.11	4.11	432.25	6.25	0.86	0.7600 Dummy				
2 SL - (14)	85.23	422.00	0.00	419.00	0.00	3.00	3.5200 CIRCULAR				
3 SL - (15)	62.02	426.00	0.00	422.00	0.00	4.00	6.4500 CIRCULAR				
4 SL - (16)	101.17	429.00	0.00	426.00	0.00	3.00	2.9700 CIRCULAR				
5 SL - (18)	128.37	427.50	0.00	423.00	1.00	4.50	3.5100 CIRCULAR				

Pipe Results

SN Element	Peak	Time of	Design Flow	Peak Flow/	Peak Flow	Travel	Peak Flow	Peak Flow	Total Time	Frou
ID	Flow	Peak Flow	Capacity	Design Flow	Velocity	Time	Depth	Depth/	Surcharged	Numt
		Occurrence		Ratio				Total Depth		
								Ratio		
	(cfs)	(days hh:mm)	(cfs)		(ft/sec)	(min)	(ft)		(min)	
1 L-SL - (16)	0.05	0 00:10	0.00	0.00	0.00		0.00	0.00	0.00	
2 SL - (14)	4.46	0 00:02	21.35	0.21	9.59	0.15	0.46	0.31	0.00	
3 SL - (15)	2.41	0 00:10	28.90	0.08	9.93	0.10	0.29	0.20	0.00	
4 SL - (16)	1.62	0 00:10	19.60	0.08	7.68	0.22	0.29	0.19	0.00	
5 SL - (18)	2.13	0 00:12	21.31	0.10	7.74	0.28	0.32	0.21	0.00	

Inlet Input


SN Element	Inlet	Number of	Catchbasin	Max (Rim)	Inlet	Initial	Initial	Ponded	Grate
ID	Location	Inlets	Invert	Elevation	Depth	Water	Water	Area	Clogging
			Elevation			Elevation	Depth		Factor
			(ft)	(ft)	(ft)	(ft)	(ft)	(ft²)	(%)
1 AD-4	On Sag	1	427.50	431.80	4.30	427.50	0.00	10.00	0.00
2 CB-1	On Sag	1	422.00	431.61	9.61	422.00	0.00	10.00	0.00
3 CB-2	On Sag	1	426.00	432.25	6.25	426.00	0.00	10.00	0.00
4 CB-3	On Grade	1	429.00	433.11	4.11	429.00	0.00	N/A	0.00

Roadway & Gutter Input

SN Element	Roadway	Roadway	Roadway	Gutter	Gutter	Gutter	Allowable	
ID	Longitudinal	Cross	Manning's	Cross	Width De	epression	Spread	
	Slope	Slope	Roughness	Slope				
	(ft/ft)	(ft/ft)		(ft/ft)	(ft)	(in)	(ft)	
1 AD-4	N/A	0.0300	0.0150	0.0300	1.50			

Inlet Results

SN	Element	Peak	Peak	Peak Flow	Peak Flow	Inlet	Max Gutter	Max Gutter	Max Gutter	Time of	T
	ID	Flow	Lateral	Intercepted	Bypassing	Efficiency	Spread	Water Elev.	Water Depth	Max Depth	Floo
	Inflow		Inflow	by	Inlet	during Peak	during Peak	during Peak	during Peak	Occurrence	Volu
				Inlet		Flow	Flow	Flow	Flow		
		(cfs)	(cfs)	(cfs)	(cfs)	(%)	(ft)	(ft)	(ft)	(days hh:mm)	(ac
1	AD-4	2.14	2.14	N/A	N/A	N/A	9.05	432.17	0.37	0 00:12	(
2	CB-1	3.48	3.48	N/A	N/A	N/A	7.02	432.07	0.46	0 00:12	(
3	CB-2	1.01	1.00	N/A	N/A	N/A	3.07	432.59	0.34	0 00:10	(
4	CB-3	1.68	1.68	1.64	0.04	97.79	5.91	433.27	0.16	0 00:10	(

Project Description

File Name Bryant Pharmacy Drainage Analysis 11-13-25.SPF

Project Options

 Flow Units
 CFS

 Elevation Type
 Elevation

 Hydrology Method
 Rational

 Time of Concentration (TOC) Method
 SCS TR-55

 Link Routing Method
 Kinematic Wave

 Enable Overflow Ponding at Nodes
 YES

 Skip Steady State Analysis Time Periods
 NO

Analysis Options

Start Analysis On	00:00:00	0:00:00
End Analysis On	00:00:00	0:00:00
Start Reporting On	00:00:00	0:00:00
Antecedent Dry Days	0	days
Runoff (Dry Weather) Time Step	0 01:00:00	days hh:mm:ss
Runoff (Wet Weather) Time Step	0 00:05:00	days hh:mm:ss
Reporting Time Step	0 00:05:00	days hh:mm:ss
Routing Time Step	30	seconds

Number of Elements

	Qt
Rain Gages	0
Subbasins	4
Nodes	5
Junctions	0
Outfalls	1
Flow Diversions	0
Inlets	4
Storage Nodes	0
Links	5
Channels	0
Pipes	5
Pumps	0
Orifices	0
Weirs	0
Outlets	0
Pollutants	0
Land Uses	0

Rainfall Details

Return Period 50 year(s)

Subbasin Summary

SN Subbasin	Area	Weighted	Total	Total	Total	Peak	Time of
ID		Runoff	Rainfall	Runoff	Runoff	Runoff	Concentration
		Coefficient			Volume		
	(ac)		(in)	(in)	(ac-in)	(cfs)	(days hh:mm:ss)
1 SUB-AD-4	0.40	0.8500	1.36	1.16	0.46	2.34	0 00:11:45
2 Sub-CB-1	0.36	0.8500	0.56	0.47	0.17	3.83	0 00:02:40
3 Sub-CB-2	0.16	0.8500	1.14	0.97	0.15	1.09	0 00:08:30
4 Sub-CB-3	0.30	0.8500	1.28	1.09	0.33	1.84	0 00:10:43

Node Summary

SN	Element	Element	Invert	Ground/Rim	Initial	Surcharge	Ponded	Peak	Max HGL	Max	Min
	ID	Туре	Elevation	(Max)	Water	Elevation	Area	Inflow	Elevation	Surcharge	Freeboard
				Elevation	Elevation				Attained	Depth	Attained
										Attained	
			(ft)	(ft)	(ft)	(ft)	(ft ²)	(cfs)	(ft)	(ft)	(ft)
1	Out-1SL - (14)	Outfall	419.00					4.93	419.49		

Link Summary

SN Element	Element	From	To (Outlet)	Length	Inlet	Outlet	Average	Diameter or	Manning's	Peak	Design Flow	Peak Flow/	Peak Flow	Peak Flow	Peak Flow	To
ID	Туре	(Inlet)	Node		Invert	Invert	Slope	Height	Roughness	Flow	Capacity	Design Flow	Velocity	Depth	Depth/	Sur
		Node			Elevation	Elevation						Ratio			Total Depth	
															Ratio	
				(ft)	(ft)	(ft)	(%)	(in)		(cfs)	(cfs)		(ft/sec)	(ft)		
1 L-SL - (16)	Pipe	CB-3	CB-2	112.54	433.11	432.25	0.7600			0.08	0.00	0.00	0.00	0.00	0.00	
2 SL - (14)	Pipe	CB-1	Out-1SL - (14)	85.23	422.00	419.00	3.5200			4.93	21.35	0.23	9.86	0.49	0.33	
3 SL - (15)	Pipe	CB-2	CB-1	62.02	426.00	422.00	6.4500			2.64	28.90	0.09	10.20	0.31	0.20	
4 SL - (16)	Pipe	CB-3	CB-2	101.17	429.00	426.00	2.9700			1.75	19.60	0.09	7.83	0.30	0.20	
5 SL - (18)	Pipe	AD-4	CB-1	128.37	427.50	423.00	3.5100			2.33	21.31	0.11	7.94	0.33	0.22	

Inlet Summary

SN Element	Inlet	Number of	Catchbasin	Max (Rim)	Initial	Ponded	Peak	Peak Flow	Peak Flow	Inlet	Allowable	Max Gutter	Max Gutter
ID	Location	Inlets	Invert	Elevation	Water	Area	Flow	Intercepted	Bypassing	Efficiency	Spread	Spread	Water Elev.
			Elevation		Elevation			by	Inlet	during Peak		during Peak	during Peak
								Inlet		Flow		Flow	Flow
			(ft)	(ft)	(ft)	(ft²)	(cfs)	(cfs)	(cfs)	(%)	(ft)	(ft)	(ft)
1 AD-4	On Sag	1	427.50	431.80	427.50	10.00	2.34	N/A	N/A	N/A	10.00	9.56	432.19
2 CB-1	On Sag	1	422.00	431.61	422.00	10.00	3.83	N/A	N/A	N/A	10.00	7.48	432.08
3 CB-2	On Sag	1	426.00	432.25	426.00	10.00	1.10	N/A	N/A	N/A	10.00	3.26	432.60
4 CB-3	On Grade	1	429.00	433.11	429.00	N/A	1.84	1.76	0.07	96.13	10.00	6.13	433.28

Subbasin Hydrology

Subbasin: SUB-AD-4

Input Data

Area (ac)	0.4
Weighted Runoff Coefficient	0.85

Time of Concentration

TOC Method : SCS TR-55

Sheet Flow Equation :

 $Tc = (0.007 * ((n * Lf)^0.8)) / ((P^0.5) * (Sf^0.4))$

Where:

- Tc = Time of Concentration (hr)
- n = Manning's roughness
- Lf = Flow Length (ft)
- P = 2 yr, 24 hr Rainfall (inches)
- Sf = Slope (ft/ft)

Shallow Concentrated Flow Equation:

- V = 16.1345 * (Sf^0.5) (unpaved surface)
- V = 20.3282 * (Sf^0.5) (paved surface)
- V = 15.0 * (Sf^0.5) (grassed waterway surface)
- V = 10.0 * (Sf^0.5) (nearly bare & untilled surface)
- V = 9.0 * (Sf^0.5) (cultivated straight rows surface)
- V = 7.0 * (Sf^0.5) (short grass pasture surface)
- V = 5.0 * (Sf^0.5) (woodland surface)
- V = 2.5 * (Sf^0.5) (forest w/heavy litter surface)
- Tc = (Lf / V) / (3600 sec/hr)

Where:

- Tc = Time of Concentration (hr)
- Lf = Flow Length (ft)
- V = Velocity (ft/sec)
- Sf = Slope (ft/ft)

Channel Flow Equation :

- $V = (1.49 * (R^{(2/3)}) * (Sf^{(0.5)}) / n$
- R = Aq / Wp
- Tc = (Lf / V) / (3600 sec/hr)

	Subarea	Subarea	Subarea
Sheet Flow Computations	Α	В	С
Manning's Roughness:	0.3	0	0
Flow Length (ft):	100	0	0
Slope (%):	4.2	0	0
2 yr, 24 hr Rainfall (in):	4.36	0	0
Velocity (ft/sec):	0.15	0	0
Computed Flow Time (min) :	10.86	0	0
	Subarea	Subarea	Subarea
Shallow Concentrated Flow Computations	Α	В	С
Flow Length (ft):	109	0	0
Slope (%):	1	0	0
Surface Type :	Paved	Unpaved	Unpaved
Velocity (ft/sec):	2.03	0	0
Computed Flow Time (min):	0.89	0	0
Total TOC (min)11.76			

Input Data

Area (ac)	0.36
Weighted Runoff Coefficient	0.85

Time of Concentration

	Subarea	Subarea	Subarea
Sheet Flow Computations	Α	В	С
Manning's Roughness :	0.3	0	0
Flow Length (ft):	18.76	0	0
Slope (%):	5.5	0	0
2 yr, 24 hr Rainfall (in) :	4.6	0	0
Velocity (ft/sec):	0.13	0	0
Computed Flow Time (min):	2.49	0	0
	Subarea	Subarea	Subarea

Shallow Concentrated Flow Computations	Α	В	С
Flow Length (ft):	36.8	0	0
Slope (%):	2.5	0	0
Surface Type :	Paved	Paved	Paved
Velocity (ft/sec):	3.21	0	0
Computed Flow Time (min):	0.19	0	0
Total TOC (min)2.68			

Input Data

Area (ac)	0.16
Weighted Runoff Coefficient	0.85

Time of Concentration

	Subarea	Subarea	Subarea
Sheet Flow Computations	Α	В	С
Manning's Roughness :	0.3	0	0
Flow Length (ft):	49.44	0	0
Slope (%):	2	0	0
2 yr, 24 hr Rainfall (in) :	4.36	0	0
Velocity (ft/sec):	0.1	0	0
Computed Flow Time (min) :	8.32	0	0

Shallow Concentrated Flow Computations	Subarea A	Subarea B	Subarea C
Flow Length (ft):	26.44	0	0
Slope (%):	1.5	0	0
Surface Type :	Paved	Paved	Paved
Velocity (ft/sec):	2.49	0	0
Computed Flow Time (min):	0.18	0	0
Total TOC (min)8.50			

Input Data

Area (ac)	0.3
Weighted Runoff Coefficient	0.85

Time of Concentration

	Subarea	Subarea	Subarea
Sheet Flow Computations	Α	В	С
Manning's Roughness:	0.3	0	0
Flow Length (ft):	41.23	0	0
Slope (%):	1	0	0
2 yr, 24 hr Rainfall (in) :	4.36	0	0
Velocity (ft/sec):	0.07	0	0
Computed Flow Time (min):	9.49	0	0
	Subarea	Subarea	Subarea
Shallow Concentrated Flow Computations	Α	В	С
Flow Length (ft):	150.58	0	0
Slope (%):	1	0	0

Paved Paved Paved 0 0 0 0

2.03

1.24

Surface Type : Velocity (ft/sec) : Computed Flow Time (min):
Total TOC (min)10.73

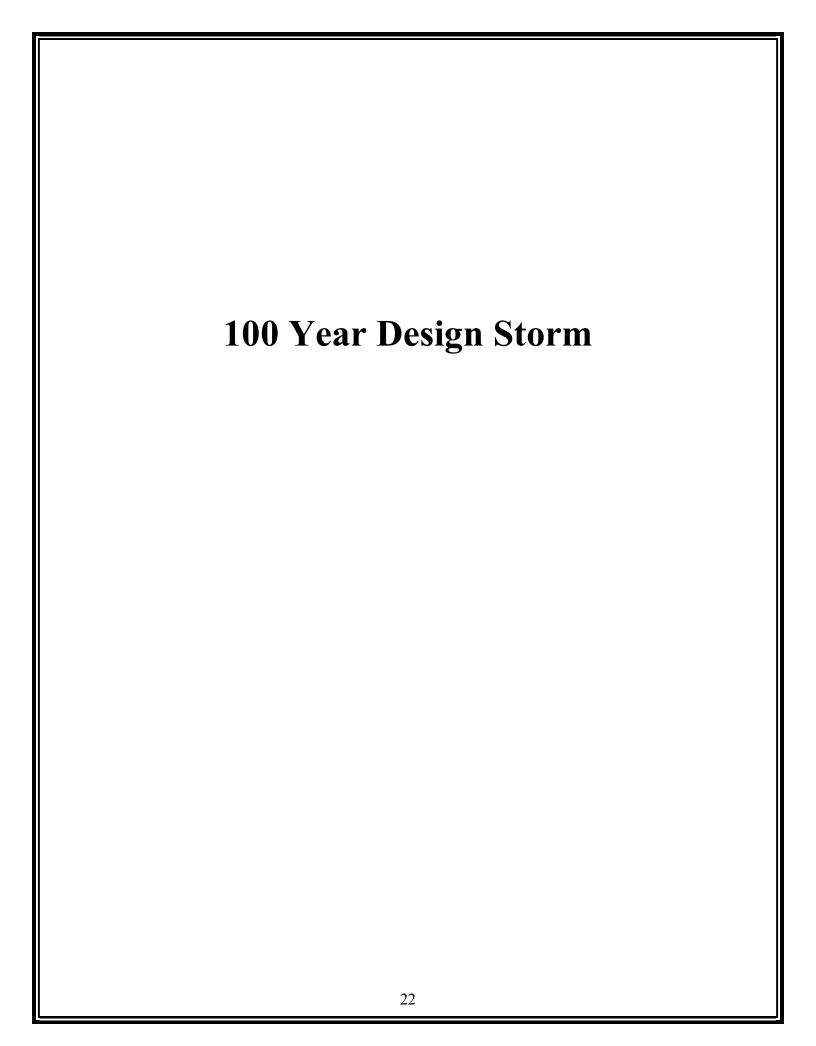
Pipe Input

S	N Element	Length	Inlet	Inlet	Outlet	Outlet	Total	Average	Pipe	Pipe	Pipe	Manning's	Entr
	ID		Invert	Invert	Invert	Invert	Drop	Slope	Shape	Diameter or	Width	Roughness	Lc
			Elevation	Offset	Elevation	Offset				Height			
		(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(%)		(in)	(in)		
	1 L-SL - (16)	112.54	433.11	4.11	432.25	6.25	0.86	0.7600	Dummy				
	2 SL - (14)	85.23	422.00	0.00	419.00	0.00	3.00	3.5200	CIRCULAR				
	3 SL - (15)	62.02	426.00	0.00	422.00	0.00	4.00	6.4500	CIRCULAR				
	4 SL - (16)	101.17	429.00	0.00	426.00	0.00	3.00	2.9700	CIRCULAR				
	5 SL - (18)	128.37	427.50	0.00	423.00	1.00	4.50	3.5100	CIRCULAR				

Pipe Results

SN Element	Peak	Time of	Design Flow	Peak Flow/	Peak Flow	Travel	Peak Flow	Peak Flow	Total Time	Frou
ID	Flow	Peak Flow	Capacity	Design Flow	Velocity	Time	Depth	Depth/	Surcharged	Numt
		Occurrence		Ratio				Total Depth		
								Ratio		
	(cfs)	(days hh:mm)	(cfs)		(ft/sec)	(min)	(ft)		(min)	
1 L-SL - (16)	0.08	0 00:10	0.00	0.00	0.00		0.00	0.00	0.00	
2 SL - (14)	4.93	0 00:02	21.35	0.23	9.86	0.14	0.49	0.33	0.00	
3 SL - (15)	2.64	0 00:10	28.90	0.09	10.20	0.10	0.31	0.20	0.00	
4 SL - (16)	1.75	0 00:10	19.60	0.09	7.83	0.22	0.30	0.20	0.00	
5 SL - (18)	2.33	0 00:12	21.31	0.11	7.94	0.27	0.33	0.22	0.00	

Inlet Input


SN Element	Inlet	Number of	Catchbasin	Max (Rim)	Inlet	Initial	Initial	Ponded	Grate
ID	Location	Inlets	Invert	Elevation	Depth	Water	Water	Area	Clogging
			Elevation			Elevation	Depth		Factor
			(ft)	(ft)	(ft)	(ft)	(ft)	(ft²)	(%)
1 AD-4	On Sag	1	427.50	431.80	4.30	427.50	0.00	10.00	0.00
2 CB-1	On Sag	1	422.00	431.61	9.61	422.00	0.00	10.00	0.00
3 CB-2	On Sag	1	426.00	432.25	6.25	426.00	0.00	10.00	0.00
4 CB-3	On Grade	1	429.00	433.11	4.11	429.00	0.00	N/A	0.00

Roadway & Gutter Input

SN Element	Roadway	Roadway	Roadway	Gutter	Gutter	Gutter	Allowable	
ID	Longitudinal	Cross	Manning's	Cross	Width De	epression	Spread	
	Slope	Slope	Roughness	Slope				
	(ft/ft)	(ft/ft)		(ft/ft)	(ft)	(in)	(ft)	
1 AD-4	N/A	0.0300	0.0150	0.0300	1.50			

Inlet Results

SN Element	Peak	Peak	Peak Flow	Peak Flow	Inlet	Max Gutter	Max Gutter	Max Gutter	Time of	T
ID	Flow	Lateral	Intercepted	Bypassing	Efficiency	Spread	Water Elev.	Water Depth	Max Depth	Floo
		Inflow	by	Inlet	during Peak	during Peak	during Peak	during Peak	Occurrence	Volu
			Inlet		Flow	Flow	Flow	Flow		
	(cfs)	(cfs)	(cfs)	(cfs)	(%)	(ft)	(ft)	(ft)	(days hh:mm)	(ac
1 AD-4	2.34	2.34	N/A	N/A	N/A	9.56	432.19	0.39	0 00:12	(
2 CB-1	3.83	3.83	N/A	N/A	N/A	7.48	432.08	0.47	0 00:12	(
3 CB-2	1.10	1.09	N/A	N/A	N/A	3.26	432.60	0.35	0 00:10	(
4 CB-3	1.84	1.84	1.76	0.07	96.13	6.13	433.28	0.17	0 00:10	(

Project Description

File Name Bryant Pharmacy Drainage Analysis 11-13-25.SPF

Project Options

Flow Units	CFS
Elevation Type	Elevation
Hydrology Method	Rational
Time of Concentration (TOC) Method	SCS TR-55
Link Routing Method	Kinematic Wave
Enable Overflow Ponding at Nodes	YES
Skip Steady State Analysis Time Periods	NO

Analysis Options

Start Analysis On	00:00:00	0:00:00
End Analysis On	00:00:00	0:00:00
Start Reporting On	00:00:00	0:00:00
Antecedent Dry Days	0	days
Runoff (Dry Weather) Time Step	0 01:00:00	days hh:mm:ss
Runoff (Wet Weather) Time Step	0 00:05:00	days hh:mm:ss
Reporting Time Step	0 00:05:00	days hh:mm:ss
Routing Time Step	30	seconds

Number of Elements

	Qt
Rain Gages	0
Subbasins	4
Nodes	5
Junctions	0
Outfalls	1
Flow Diversions	0
Inlets	4
Storage Nodes	0
Links	5
Channels	0
Pipes	5
Pumps	0
Orifices	0
Weirs	0
Outlets	0
Pollutants	0
Land Uses	0

Rainfall Details

Return Period 100 year(s)

Subbasin Summary

Time of	Peak	Total	Total	Total	Weighted	Area	SN Subbasin
Concentration	Runoff	Runoff	Runoff	Rainfall	Runoff		ID
		Volume			Coefficient		
(days hh:mm:ss)	(cfs)	(ac-in)	(in)	(in)		(ac)	
0 00:11:45	2.54	0.50	1.25	1.48	0.8500	0.40	1 SUB-AD-4
0 00:02:40	4.16	0.18	0.51	0.60	0.8500	0.36	2 Sub-CB-1
0 00:08:30	1.19	0.17	1.05	1.24	0.8500	0.16	3 Sub-CB-2
0 00:10:43	1.99	0.35	1.18	1.39	0.8500	0.30	4 Sub-CB-3

Node Summary

SN Element	Element	Invert	Ground/Rim	Initial	Surcharge	Ponded	Peak	Max HGL	Max	Min
ID	Type	Elevation	(Max)	Water	Elevation	Area	Inflow	Elevation	Surcharge	Freeboard
			Elevation	Elevation				Attained	Depth	Attained
									Attained	
		(ft)	(ft)	(ft)	(ft)	(ft ²)	(cfs)	(ft)	(ft)	(ft)
1 Out-1SL - (14)	Outfall	419.00					5.36	419.51		•

Link Summary

SN Element	Element	From	To (Outlet)	Length	Inlet	Outlet	Average	Diameter or	Manning's	Peak	Design Flow	Peak Flow/	Peak Flow	Peak Flow	Peak Flow	To
ID	Туре	(Inlet)	Node		Invert	Invert	Slope	Height	Roughness	Flow	Capacity	Design Flow	Velocity	Depth	Depth/	Sur
		Node			Elevation	Elevation						Ratio			Total Depth	
															Ratio	
				(ft)	(ft)	(ft)	(%)	(in)		(cfs)	(cfs)		(ft/sec)	(ft)		
1 L-SL - (16)	Pipe	CB-3	CB-2	112.54	433.11	432.25	0.7600			0.11	0.00	0.00	0.00	0.00	0.00	
2 SL - (14)	Pipe	CB-1	Out-1SL - (14)	85.23	422.00	419.00	3.5200			5.36	21.35	0.25	10.09	0.51	0.34	
3 SL - (15)	Pipe	CB-2	CB-1	62.02	426.00	422.00	6.4500			2.86	28.90	0.10	10.44	0.32	0.21	
4 SL - (16)	Pipe	CB-3	CB-2	101.17	429.00	426.00	2.9700			1.87	19.60	0.10	7.98	0.31	0.21	
5 SL - (18)	Pipe	AD-4	CB-1	128.37	427.50	423.00	3.5100			2.53	21.31	0.12	8.12	0.35	0.23	

Inlet Summary

SN Element	Inlet	Number of	Catchbasin	Max (Rim)	Initial	Ponded	Peak	Peak Flow	Peak Flow	Inlet	Allowable	Max Gutter	Max Gutter
ID	Location	Inlets	Invert	Elevation	Water	Area	Flow	Intercepted	Bypassing	Efficiency	Spread	Spread	Water Elev.
			Elevation		Elevation			by	Inlet	during Peak		during Peak	during Peak
								Inlet		Flow		Flow	Flow
			(ft)	(ft)	(ft)	(ft²)	(cfs)	(cfs)	(cfs)	(%)	(ft)	(ft)	(ft)
1 AD-4	On Sag	1	427.50	431.80	427.50	10.00	2.54	N/A	N/A	N/A	10.00	10.04	432.20
2 CB-1	On Sag	1	422.00	431.61	422.00	10.00	4.16	N/A	N/A	N/A	10.00	7.90	432.09
3 CB-2	On Sag	1	426.00	432.25	426.00	10.00	1.22	N/A	N/A	N/A	10.00	3.48	432.61
4 CB-3	On Grade	1	429.00	433.11	429.00	N/A	1.99	1.88	0.11	94.42	10.00	6.32	433.28

Subbasin Hydrology

Subbasin: SUB-AD-4

Input Data

Area (ac)	0.4
Weighted Runoff Coefficient	0.85

Time of Concentration

TOC Method : SCS TR-55

Sheet Flow Equation :

 $Tc = (0.007 * ((n * Lf)^0.8)) / ((P^0.5) * (Sf^0.4))$

Where:

- Tc = Time of Concentration (hr)
- n = Manning's roughness
- Lf = Flow Length (ft)
- P = 2 yr, 24 hr Rainfall (inches)
- Sf = Slope (ft/ft)

Shallow Concentrated Flow Equation:

- V = 16.1345 * (Sf^0.5) (unpaved surface)
- V = 20.3282 * (Sf^0.5) (paved surface)
- V = 15.0 * (Sf^0.5) (grassed waterway surface)
- V = 10.0 * (Sf^0.5) (nearly bare & untilled surface)
- V = 9.0 * (Sf^0.5) (cultivated straight rows surface)
- V = 7.0 * (Sf^0.5) (short grass pasture surface)
- V = 5.0 * (Sf^0.5) (woodland surface)
- V = 2.5 * (Sf^0.5) (forest w/heavy litter surface)
- Tc = (Lf / V) / (3600 sec/hr)

Where:

- Tc = Time of Concentration (hr)
- Lf = Flow Length (ft)
- V = Velocity (ft/sec)
- Sf = Slope (ft/ft)

Channel Flow Equation :

- $V = (1.49 * (R^{(2/3)}) * (Sf^{(0.5)}) / n$
- R = Aq / Wp
- Tc = (Lf / V) / (3600 sec/hr)

	Subarea	Subarea	Subarea
Sheet Flow Computations	Α	В	С
Manning's Roughness:	0.3	0	0
Flow Length (ft):	100	0	0
Slope (%):	4.2	0	0
2 yr, 24 hr Rainfall (in):	4.36	0	0
Velocity (ft/sec):	0.15	0	0
Computed Flow Time (min) :	10.86	0	0
	Subarea	Subarea	Subarea
Shallow Concentrated Flow Computations	Α	В	С
Flow Length (ft):	109	0	0
Slope (%):	1	0	0
Surface Type :	Paved	Unpaved	Unpaved
Velocity (ft/sec):	2.03	0	0
Computed Flow Time (min):	0.89	0	0
Total TOC (min)11.76			

Input Data

Area (ac)	0.36
Weighted Runoff Coefficient	0.85

Time of Concentration

	Subarea	Subarea	Subarea
Sheet Flow Computations	Α	В	С
Manning's Roughness :	0.3	0	0
Flow Length (ft):	18.76	0	0
Slope (%):	5.5	0	0
2 yr, 24 hr Rainfall (in) :	4.6	0	0
Velocity (ft/sec):	0.13	0	0
Computed Flow Time (min):	2.49	0	0
	Subarea	Subarea	Subarea

Shallow Concentrated Flow Computations	Α	В	С
Flow Length (ft):	36.8	0	0
Slope (%):	2.5	0	0
Surface Type :	Paved	Paved	Paved
Velocity (ft/sec) :	3.21	0	0
Computed Flow Time (min):	0.19	0	0
Total TOC (min)2.68			

Input Data

Area (ac)	0.16
Weighted Runoff Coefficient	0.85

Time of Concentration

	Subarea	Subarea	Subarea
Sheet Flow Computations	Α	В	С
Manning's Roughness :	0.3	0	0
Flow Length (ft):	49.44	0	0
Slope (%):	2	0	0
2 yr, 24 hr Rainfall (in) :	4.36	0	0
Velocity (ft/sec):	0.1	0	0
Computed Flow Time (min) :	8.32	0	0

Shallow Concentrated Flow Computations	Subarea A	Subarea B	Subarea C
Flow Length (ft):	26.44	0	0
Slope (%):	1.5	0	0
Surface Type :	Paved	Paved	Paved
Velocity (ft/sec):	2.49	0	0
Computed Flow Time (min):	0.18	0	0
Total TOC (min)8.50			

Input Data

Area (ac)	0.3
Weighted Runoff Coefficient	0.85

Time of Concentration

Computed Flow Time (min):
Total TOC (min)10.73

	Subarea	Subarea	Subarea
Sheet Flow Computations	Α	В	С
Manning's Roughness:	0.3	0	0
Flow Length (ft):	41.23	0	0
Slope (%):	1	0	0
2 yr, 24 hr Rainfall (in) :	4.36	0	0
Velocity (ft/sec):	0.07	0	0
Computed Flow Time (min) :	9.49	0	0
	Subarea	Subarea	Subarea
Shallow Concentrated Flow Computations	Α	В	С
Flow Length (ft):	150.58	0	0
Slope (%):	1	0	0
Surface Type :	Paved	Paved	Paved
Velocity (ft/sec):	2.03	0	0

0

0

1.24

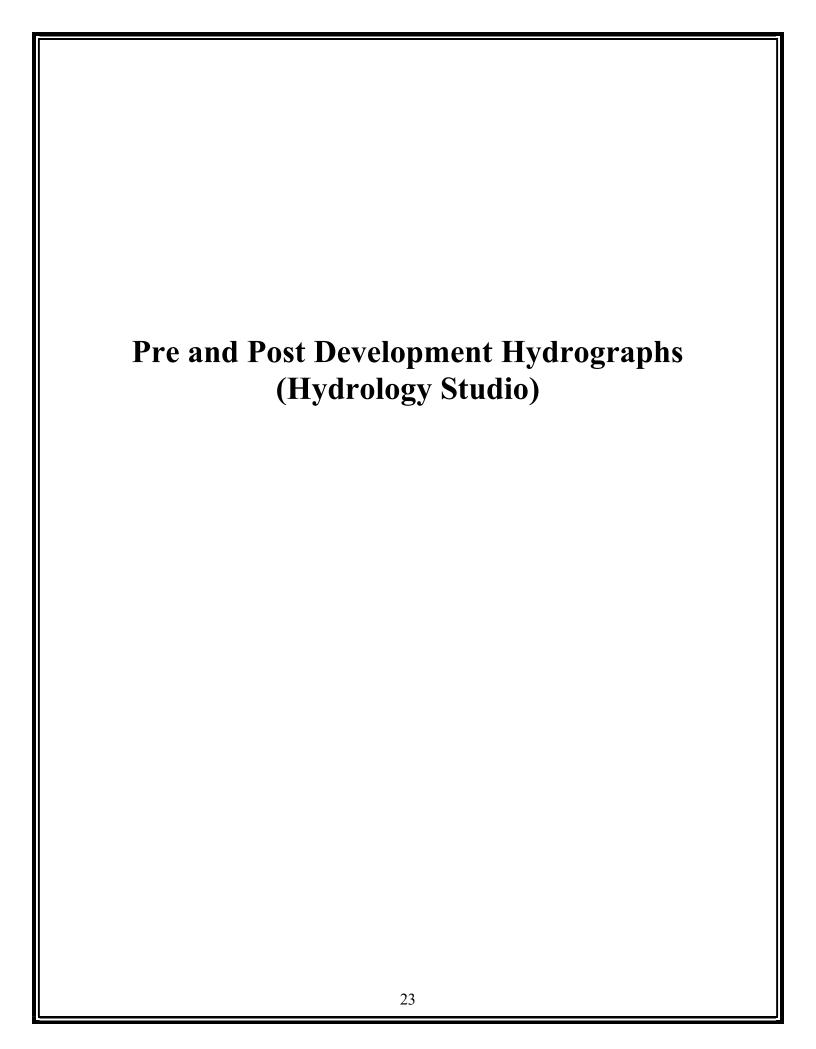
Pipe Input

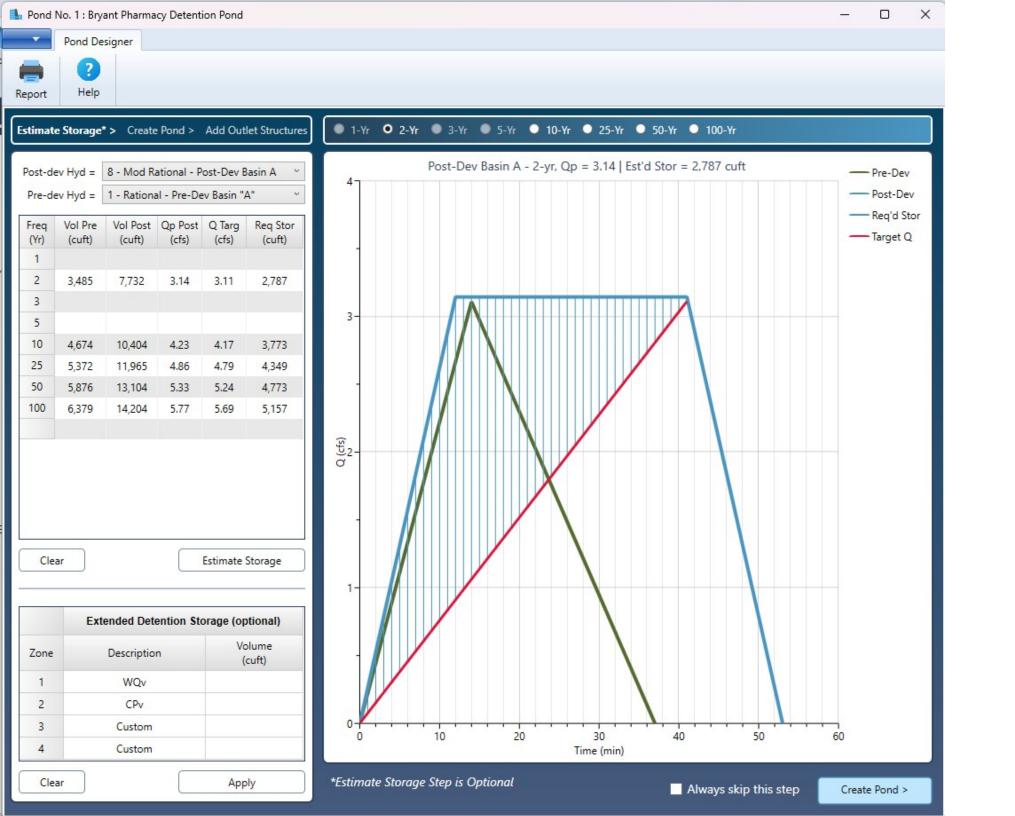
SN Element	Length	Inlet	Inlet	Outlet	Outlet	Total	Average Pipe	Pipe	Pipe	Manning's	Entr
ID		Invert	Invert	Invert	Invert	Drop	Slope Shape	Diameter or	Width	Roughness	Lc
		Elevation	Offset	Elevation	Offset			Height			
	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(%)	(in)	(in)		
1 L-SL - (16)	112.54	433.11	4.11	432.25	6.25	0.86	0.7600 Dummy				
2 SL - (14)	85.23	422.00	0.00	419.00	0.00	3.00	3.5200 CIRCULAR				
3 SL - (15)	62.02	426.00	0.00	422.00	0.00	4.00	6.4500 CIRCULAR				
4 SL - (16)	101.17	429.00	0.00	426.00	0.00	3.00	2.9700 CIRCULAR				
5 SL - (18)	128.37	427.50	0.00	423.00	1.00	4.50	3.5100 CIRCULAR				

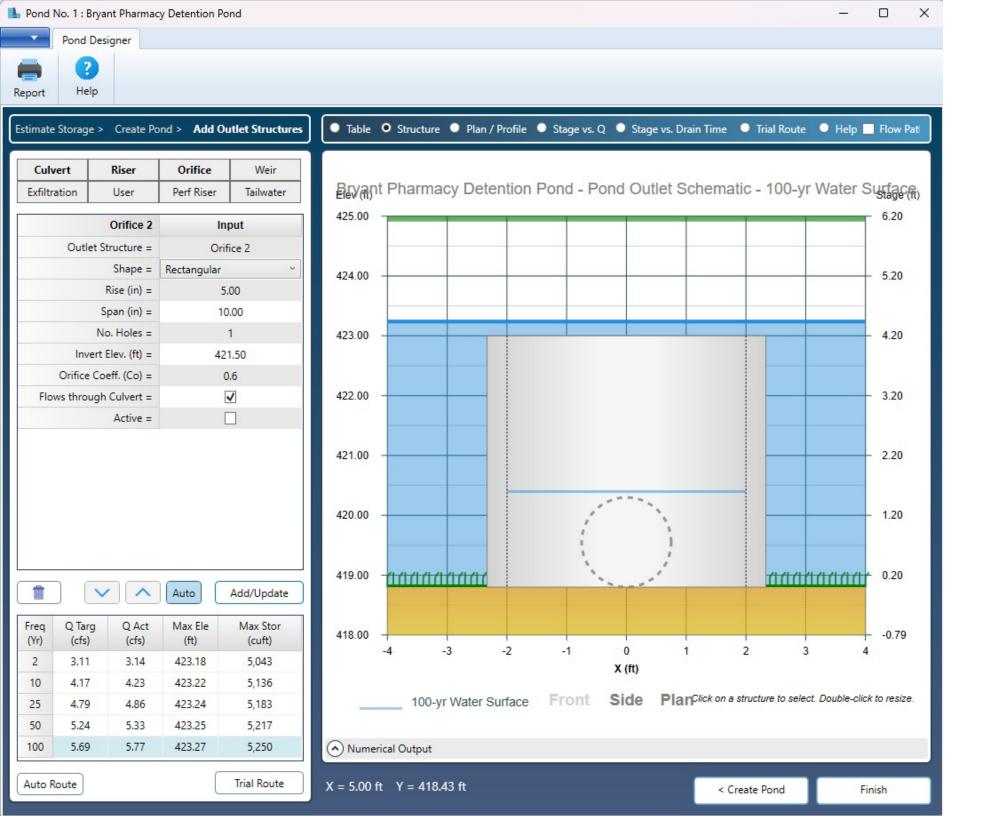
Pipe Results

SN Element	Peak	Time of	Design Flow	Peak Flow/	Peak Flow	Travel	Peak Flow	Peak Flow	Total Time	Frou
ID	Flow	Peak Flow	Capacity	Design Flow	Velocity	Time	Depth	Depth/	Surcharged	Numt
		Occurrence		Ratio				Total Depth		
								Ratio		
	(cfs)	(days hh:mm)	(cfs)		(ft/sec)	(min)	(ft)		(min)	
1 L-SL - (16)	0.11	0 00:10	0.00	0.00	0.00		0.00	0.00	0.00	
2 SL - (14)	5.36	0 00:02	21.35	0.25	10.09	0.14	0.51	0.34	0.00	
3 SL - (15)	2.86	0 00:10	28.90	0.10	10.44	0.10	0.32	0.21	0.00	
4 SL - (16)	1.87	0 00:10	19.60	0.10	7.98	0.21	0.31	0.21	0.00	
5 SL - (18)	2.53	0 00:12	21.31	0.12	8.12	0.26	0.35	0.23	0.00	

Inlet Input


SN Element	Inlet	Number of	Catchbasin	Max (Rim)	Inlet	Initial	Initial	Ponded	Grate
ID	Location	Inlets	Invert	Elevation	Depth	Water	Water	Area	Clogging
			Elevation			Elevation	Depth		Factor
			(ft)	(ft)	(ft)	(ft)	(ft)	(ft²)	(%)
1 AD-4	On Sag	1	427.50	431.80	4.30	427.50	0.00	10.00	0.00
2 CB-1	On Sag	1	422.00	431.61	9.61	422.00	0.00	10.00	0.00
3 CB-2	On Sag	1	426.00	432.25	6.25	426.00	0.00	10.00	0.00
4 CB-3	On Grade	1	429.00	433.11	4.11	429.00	0.00	N/A	0.00


Roadway & Gutter Input


SN Element	Roadway	Roadway	Roadway	Gutter	Gutter	Gutter	Allowable	
ID	Longitudinal	Cross	Manning's	Cross	Width De	epression	Spread	
	Slope	Slope	Roughness	Slope				
	(ft/ft)	(ft/ft)		(ft/ft)	(ft)	(in)	(ft)	
1 AD-4	N/A	0.0300	0.0150	0.0300	1 50			

Inlet Results

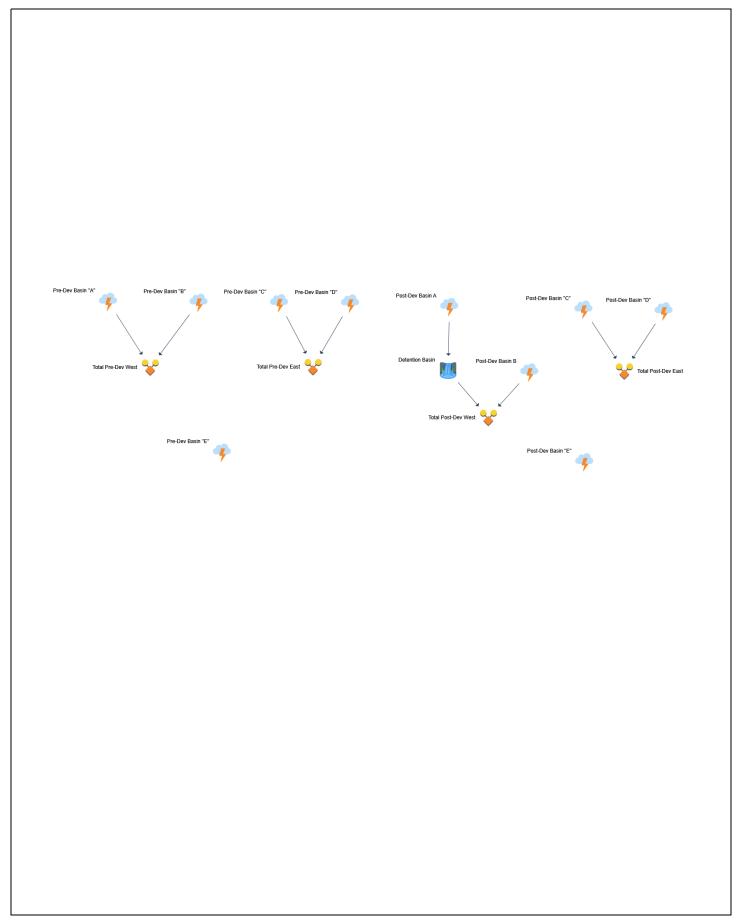
SN Element	Peak	Peak	Peak Flow	Peak Flow	Inlet	Max Gutter	Max Gutter	Max Gutter	Time of	T
ID	Flow	Lateral	Intercepted	Bypassing	Efficiency	Spread	Water Elev.	Water Depth	Max Depth	Floo
		Inflow	by	Inlet	during Peak	during Peak	during Peak	during Peak	Occurrence	Volu
			Inlet		Flow	Flow	Flow	Flow		
	(cfs)	(cfs)	(cfs)	(cfs)	(%)	(ft)	(ft)	(ft)	(days hh:mm)	(ac
1 AD-4	2.54	2.54	N/A	N/A	N/A	10.04	432.20	0.40	0 00:12	(
2 CB-1	4.16	4.16	N/A	N/A	N/A	7.90	432.09	0.49	0 00:12	(
3 CB-2	1.22	1.19	N/A	N/A	N/A	3.48	432.61	0.35	0 00:10	(
4 CB-3	1.99	1.99	1.88	0.11	94.42	6.32	433.28	0.17	0 00:10	(

Table of Contents

Hydrology Studio v 3.0.0.39 11-13-2025

Basin Model Schematic	1
Hydrograph by Return Period	2
2 - Year	
Hydrograph Summary	3
Hydrograph Reports	
Hydrograph No. 1, Rational, Pre-Dev Basin "A"	4
Hydrograph No. 2, Rational, Pre-Dev Basin "B"	5
Hydrograph No. 3, Junction, Total Pre-Dev West	6
Hydrograph No. 4, Rational, Pre-Dev Basin "C"	7
Hydrograph No. 5, Rational, Pre-Dev Basin "D"	8
Hydrograph No. 6, Junction, Total Pre-Dev East	9
Hydrograph No. 7, Rational, Pre-Dev Basin "E"	10
Hydrograph No. 8, Mod Rational, Post-Dev Basin A	11
Hydrograph No. 9, Pond Route, Detention Basin	12
Detention Pond Reports - Bryant Pharmacy Detention Pond	13
Hydrograph No. 10, Rational, Post-Dev Basin B	17
Hydrograph No. 11, Junction, Total Post-Dev West	18
Hydrograph No. 12, Rational, Post-Dev Basin "C"	19
Hydrograph No. 13, Rational, Post-Dev Basin "D"	20
Hydrograph No. 14, Junction, Total Post-Dev East	21
Hydrograph No. 15, Rational, Post-Dev Basin "E"	22
10 - Year	
Hydrograph Summary	23
Hydrograph Reports	
Hydrograph No. 1, Rational, Pre-Dev Basin "A"	24
Hydrograph No. 2, Rational, Pre-Dev Basin "B"	25
Hydrograph No. 3, Junction, Total Pre-Dev West	26
Hydrograph No. 4, Rational, Pre-Dev Basin "C"	27
Hydrograph No. 5, Rational, Pre-Dev Basin "D"	28
Hydrograph No. 6, Junction, Total Pre-Dev East	29
Hydrograph No. 7, Rational, Pre-Dev Basin "E"	30
Hydrograph No. 8, Mod Rational, Post-Dev Basin A	31
Hydrograph No. 9, Pond Route, Detention Basin	32
Hydrograph No. 10, Rational, Post-Dev Basin B	33
Hydrograph No. 11, Junction, Total Post-Dev West	34
Hydrograph No. 12, Rational, Post-Dev Basin "C"	35

Contents continued...


	Hydrograph No. 13, Rational, Post-Dev Basin "D"	36
	Hydrograph No. 14, Junction, Total Post-Dev East	37
	Hydrograph No. 15, Rational, Post-Dev Basin "E"	38
25 - Y	ear	
	Hydrograph Summary	39
	Hydrograph Reports	
	Hydrograph No. 1, Rational, Pre-Dev Basin "A"	40
	Hydrograph No. 2, Rational, Pre-Dev Basin "B"	41
	Hydrograph No. 3, Junction, Total Pre-Dev West	42
	Hydrograph No. 4, Rational, Pre-Dev Basin "C"	43
	Hydrograph No. 5, Rational, Pre-Dev Basin "D"	44
	Hydrograph No. 6, Junction, Total Pre-Dev East	45
	Hydrograph No. 7, Rational, Pre-Dev Basin "E"	46
	Hydrograph No. 8, Mod Rational, Post-Dev Basin A	47
	Hydrograph No. 9, Pond Route, Detention Basin	48
	Hydrograph No. 10, Rational, Post-Dev Basin B	49
	Hydrograph No. 11, Junction, Total Post-Dev West	50
	Hydrograph No. 12, Rational, Post-Dev Basin "C"	51
	Hydrograph No. 13, Rational, Post-Dev Basin "D"	52
	Hydrograph No. 14, Junction, Total Post-Dev East	53
	Hydrograph No. 15, Rational, Post-Dev Basin "E"	54
50 - Y	ear	
	Hydrograph Summary	55
	Hydrograph Reports	
	Hydrograph No. 1, Rational, Pre-Dev Basin "A"	56
	Hydrograph No. 2, Rational, Pre-Dev Basin "B"	57
	Hydrograph No. 3, Junction, Total Pre-Dev West	58
	Hydrograph No. 4, Rational, Pre-Dev Basin "C"	59
	Hydrograph No. 5, Rational, Pre-Dev Basin "D"	60
	Hydrograph No. 6, Junction, Total Pre-Dev East	61
	Hydrograph No. 7, Rational, Pre-Dev Basin "E"	62
	Hydrograph No. 8, Mod Rational, Post-Dev Basin A	63
	Hydrograph No. 9, Pond Route, Detention Basin	64
	Hydrograph No. 10, Rational, Post-Dev Basin B	65
	Hydrograph No. 11, Junction, Total Post-Dev West	66
	Hydrograph No. 12, Rational, Post-Dev Basin "C"	67

Contents continued...

	Hydrograph No. 13, Rational, Post-Dev Basin "D"	68
	Hydrograph No. 14, Junction, Total Post-Dev East	69
	Hydrograph No. 15, Rational, Post-Dev Basin "E"	70
100 - Year		
Hydro	graph Summary	71
Hydro	ograph Reports	
	Hydrograph No. 1, Rational, Pre-Dev Basin "A"	72
	Hydrograph No. 2, Rational, Pre-Dev Basin "B"	73
	Hydrograph No. 3, Junction, Total Pre-Dev West	74
	Hydrograph No. 4, Rational, Pre-Dev Basin "C"	75
	Hydrograph No. 5, Rational, Pre-Dev Basin "D"	76
	Hydrograph No. 6, Junction, Total Pre-Dev East	77
	Hydrograph No. 7, Rational, Pre-Dev Basin "E"	78
	Hydrograph No. 8, Mod Rational, Post-Dev Basin A	79
	Hydrograph No. 9, Pond Route, Detention Basin	80
	Hydrograph No. 10, Rational, Post-Dev Basin B	81
	Hydrograph No. 11, Junction, Total Post-Dev West	82
	Hydrograph No. 12, Rational, Post-Dev Basin "C"	83
	Hydrograph No. 13, Rational, Post-Dev Basin "D"	84
	Hydrograph No. 14, Junction, Total Post-Dev East	85
	Hydrograph No. 15, Rational, Post-Dev Basin "E"	86

Basin Model

Hydrology Studio v 3.0.0.39

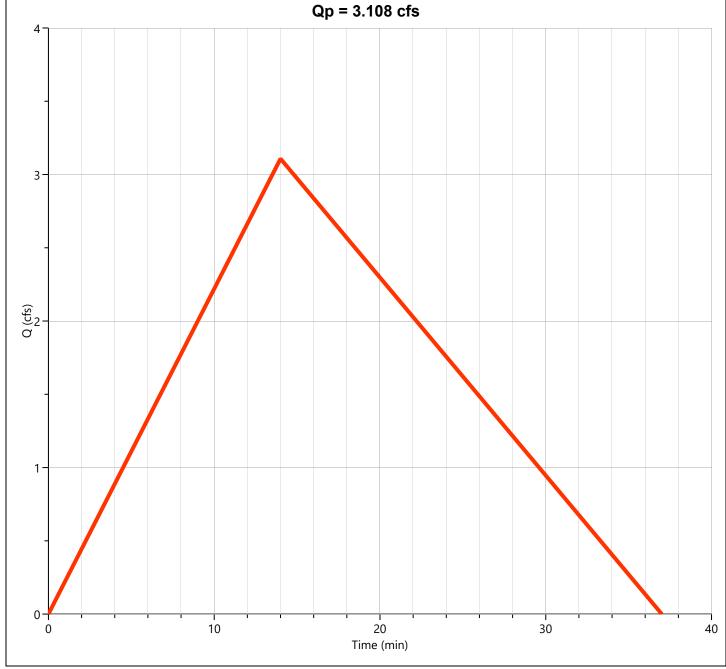
Hydrograph by Return Period

Project Name: Bryant Pharmacy File: Detention Calculation 11-13-25 FINAL.hys

11-13-2025

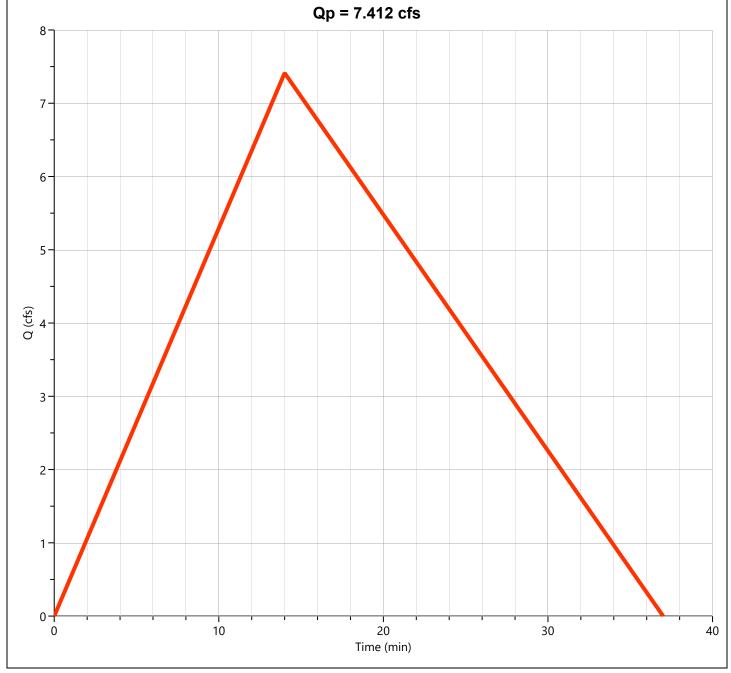
Hyd.	Hydrograph	Hydrograph	Peak Outflow (cfs)								
No.	Туре	Name	1-yr	2-yr	3-yr	5-yr	10-yr	25-yr	50-yr	100-yr	
1	Rational	Pre-Dev Basin "A"		3.108			4.168	4.791	5.240	5.689	
2	Rational	Pre-Dev Basin "B"		7.412			9.942	11.43	12.50	13.57	
3	Junction	Total Pre-Dev West		10.52			14.11	16.22	17.74	19.26	
4	Rational	Pre-Dev Basin "C"		0.922			1.236	1.420	1.553	1.686	
5	Rational	Pre-Dev Basin "D"		1.009			1.353	1.555	1.701	1.847	
6	Junction	Total Pre-Dev East		1.726			2.314	2.660	2.909	3.158	
7	Rational	Pre-Dev Basin "E"		0.978			1.314	1.510	1.652	1.793	
8	Mod Rational	Post-Dev Basin A		3.143			4.229	4.864	5.327	5.774	
9	Pond Route	Detention Basin		2.713			3.972	4.449	4.789	5.104	
10	Rational	Post-Dev Basin B		8.486			11.38	13.08	14.31	15.53	
11	Junction	Total Post-Dev West		10.30			13.53	15.42	16.77	18.08	
12	Rational	Post-Dev Basin "C"		1.443			1.931	2.218	2.424	2.635	
13	Rational	Post-Dev Basin "D"		0.284			0.381	0.438	0.479	0.520	
14	Junction	Total Post-Dev East		1.560			2.088	2.399	2.621	2.849	
15	Rational	Post-Dev Basin "E"		0.663			0.889	1.022	1.118	1.214	

Hydrograph 2-yr Summary

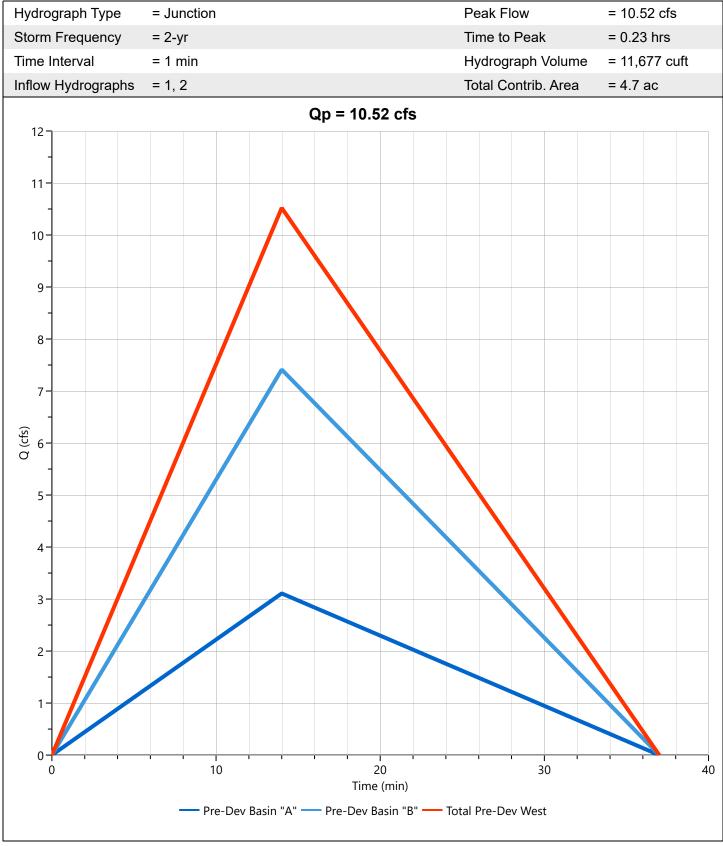

Project Name: Bryant Pharmacy File: Detention Calculation 11-13-25 FINAL.hys

11-13-2025

Hyd.	Hydrograph	Hydrograph	Peak Flow	Time to Peak	Hydrograph Volume	Inflow Hyd(s)	Maximum Elevation	11-13-2025 Maximum Storage
No.	Туре	Name	(cfs)	(hrs)	(cuft)	Hyu(s)	(ft)	(cuft)
1	Rational	Pre-Dev Basin "A"	3.108	0.23	3,485			
2	Rational	Pre-Dev Basin "B"	7.412	0.23	8,312			
3	Junction	Total Pre-Dev West	10.52	0.23	11,677	1, 2		
4	Rational	Pre-Dev Basin "C"	0.922	0.18	812			
5	Rational	Pre-Dev Basin "D"	1.009	0.25	1,212			
6	Junction	Total Pre-Dev East	1.726	0.25	2,012	4, 5		
7	Rational	Pre-Dev Basin "E"	0.978	0.32	1,489			
8	Mod Rational	Post-Dev Basin A	3.143	0.20	7,732			
9	Pond Route	Detention Basin	2.713	0.72	7,730	8	421.39	2,050
10	Rational	Post-Dev Basin B	8.486	0.23	9,516			
11	Junction	Total Post-Dev West	10.30	0.23	17,149	9, 10		
12	Rational	Post-Dev Basin "C"	1.443	0.12	809			
13	Rational	Post-Dev Basin "D"	0.284	0.28	386			
14	Junction	Total Post-Dev East	1.560	0.12	1,162	12, 13		
15	Rational	Post-Dev Basin "E"	0.663	0.27	849			

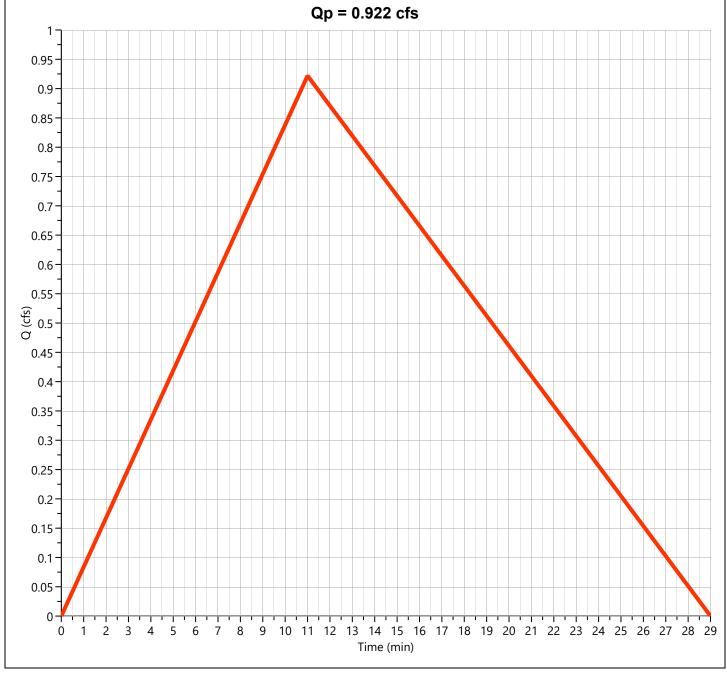

Pre-Dev Basin "A"

Hydrograph Type	= Rational	Peak Flow	= 3.108 cfs
Storm Frequency	= 2-yr	Time to Peak	= 0.23 hrs
Time Interval	= 1 min	Runoff Volume	= 3,485 cuft
Drainage Area	= 1.44 ac	Runoff Coeff.	= 0.56
Tc Method	= TR55	Time of Conc. (Tc)	= 14.0 min
IDF Curve	= City of Bryant IDF Curve.idf	Intensity	= 3.85 in/hr
Freq. Corr. Factor	= 1.00	Asc/Rec Limb Factors	s = 1/1.67

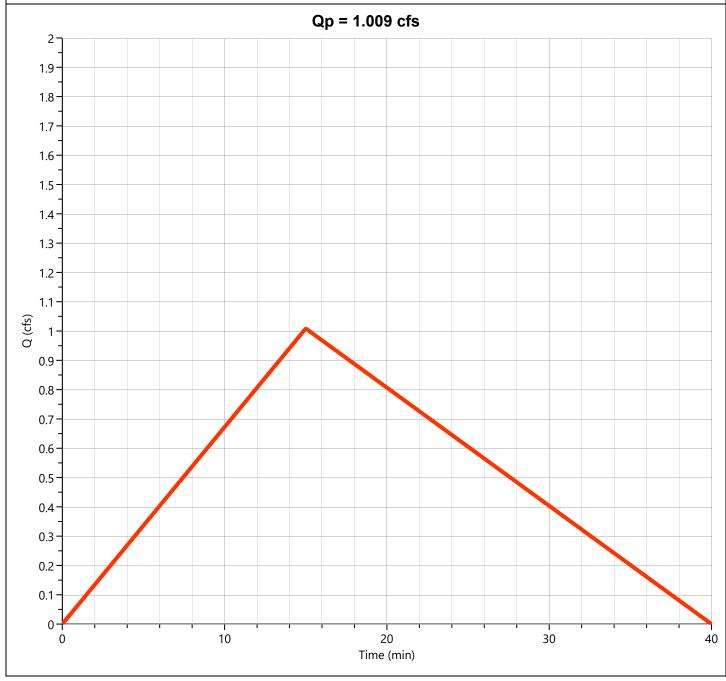


Pre-Dev Basin "B"

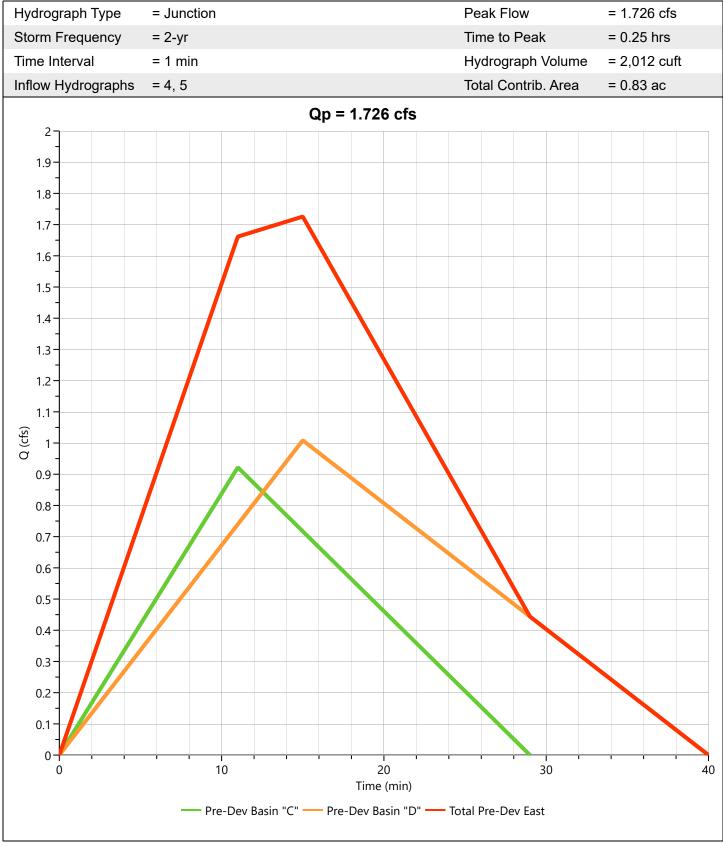
Hydrograph Type	= Rational	Peak Flow	= 7.412 cfs
Storm Frequency	= 2-yr	Time to Peak	= 0.23 hrs
Time Interval	= 1 min	Runoff Volume	= 8,312 cuft
Drainage Area	= 3.26 ac	Runoff Coeff.	= 0.59
Tc Method	= TR55	Time of Conc. (Tc)	= 14.0 min
IDF Curve	= City of Bryant IDF Curve.idf	Intensity	= 3.85 in/hr
Freq. Corr. Factor	= 1.00	Asc/Rec Limb Factors	s = 1/1.67



Total Pre-Dev West

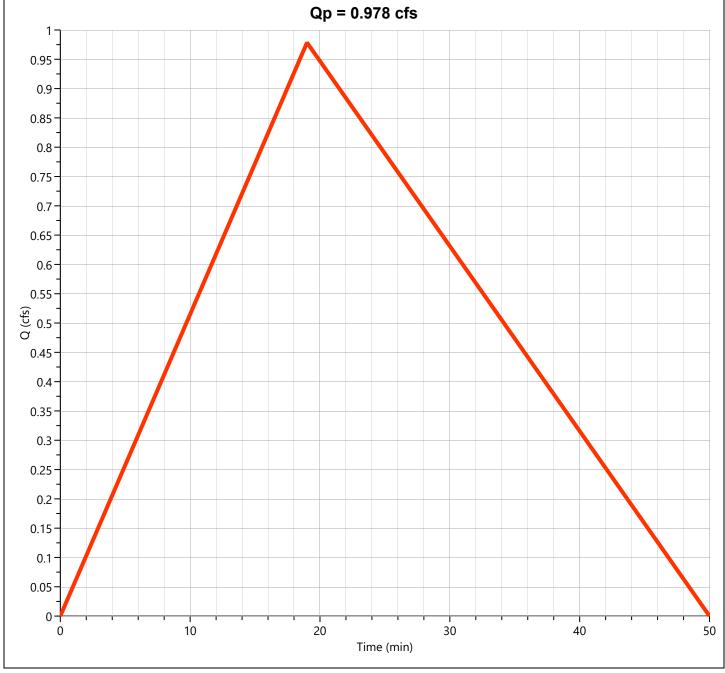

Pre-Dev Basin "C"

Hydrograph Type	= Rational	Peak Flow	= 0.922 cfs
Storm Frequency	= 2-yr	Time to Peak	= 0.18 hrs
Time Interval	= 1 min	Runoff Volume	= 812 cuft
Drainage Area	= 0.33 ac	Runoff Coeff.	= 0.65
Tc Method	= TR55	Time of Conc. (Tc)	= 11.0 min
IDF Curve	= City of Bryant IDF Curve.idf	Intensity	= 4.30 in/hr
Freq. Corr. Factor	= 1.00	Asc/Rec Limb Factors	s = 1/1.67



Pre-Dev Basin "D"

Hydrograph Type	= Rational	Peak Flow	= 1.009 cfs
Storm Frequency	= 2-yr	Time to Peak	= 0.25 hrs
Time Interval	= 1 min	Runoff Volume	= 1,212 cuft
Drainage Area	= 0.5 ac	Runoff Coeff.	= 0.54
Tc Method	= TR55	Time of Conc. (Tc)	= 15.0 min
IDF Curve	= City of Bryant IDF Curve.idf	Intensity	= 3.74 in/hr
Freq. Corr. Factor	= 1.00	Asc/Rec Limb Factors	s = 1/1.67



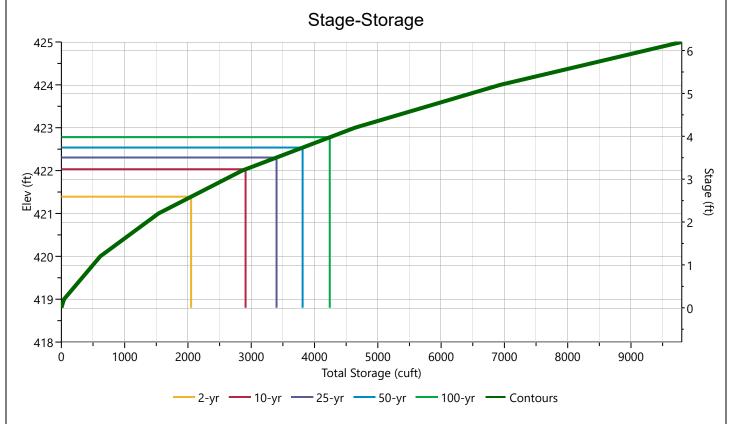
Total Pre-Dev East

Pre-Dev Basin "E"

Hydrograph Type	= Rational	Peak Flow	= 0.978 cfs
Storm Frequency	= 2-yr	Time to Peak	= 0.32 hrs
Time Interval	= 1 min	Runoff Volume	= 1,489 cuft
Drainage Area	= 0.53 ac	Runoff Coeff.	= 0.55
Tc Method	= TR55	Time of Conc. (Tc)	= 19.0 min
IDF Curve	= City of Bryant IDF Curve.idf	Intensity	= 3.36 in/hr
Freq. Corr. Factor	= 1.00	Asc/Rec Limb Factor	rs = 1/1.67

Post-Dev Basin A

Hydrograph Type	= Mod Rational	Peak Flow	= 3.143 cfs
Storm Frequency	= 2-yr	Time to Peak	= 0.20 hrs
Time Interval	= 1 min	Runoff Volume	= 7,732 cuft
Drainage Area	= 1.56 ac	Runoff Coeff.	= 0.85
Tc Method	= User	Time of Conc. (Tc)	= 12.0 min
IDF Curve	= City of Bryant IDF Curve.idf	Intensity	= 2.37 in/hr
Freq. Corr. Factor	= 1.00	Storm Duration	= 3.42 x Tc
Target Q	= 0.000 cfs	Required Storage	= 0.000 cuft
	Qp = 3.143 cfs		
3- (\$j ₂) 0		40	
0	10 20 30 Time (min)	40 5	60

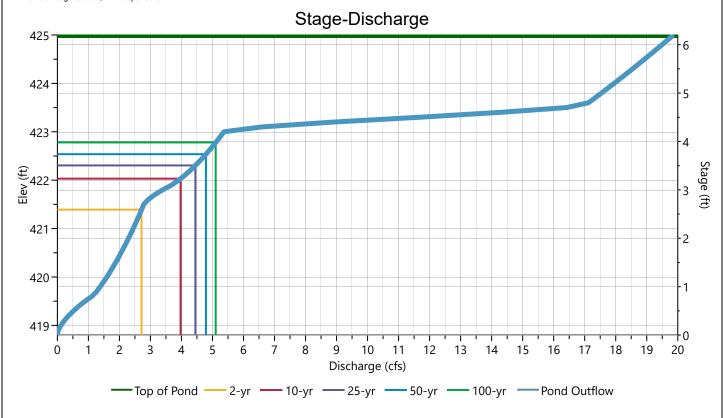

Detention Basin

Storm Frequency = 2-yr Time to Peak = 0.72 hrs Time Interval = 1 min Hydrograph Volume = 7,730 cuft Inflow Hydrograph = 8 - Post-Dev Basin A Max. Elevation = 421.39 ft Pond Name = Bryant Pharmacy Detention Pond Max. Storage = 2,050 cuft Pend Routing by Storage Indication Method Center of mass detention time = 10 m Qp = 2.713 cfs	Hydrograph Type	= Pond Route	Peak Flow	= 2.713 cfs
Time Interval = 1 min				
Inflow Hydrograph = 8 - Post-Dev Basin A Max. Elevation = 421.39 ft Pond Name = Bryant Pharmacy Detention Pond Max. Storage = 2,050 cuft Pond Routing by Storage Indication Method Center of mass detention time = 10 m Qp = 2.713 cfs				
Pond Name = Bryant Pharmacy Detention Pond Max. Storage = 2,050 cuft Center of mass detention time = 10 m Qp = 2.713 cfs				
Pond Routing by Storage Indication Method Qp = 2.713 cfs 4 3 Gradient of mass detention time = 10 m				
Qp = 2.713 cfs 4 3 (§) (P) (P) (P) (P) (P) (P) (P) (P) (P) (P				
	Pond Routing by Storage Indi		Center of ma	ss detention time = 10 min
	4 —	Qp = 2.713 cfs		
0 10 20 30 40 50 60 70 80 5 Time (min) — Req'd Stor — Post-Dev Basin A — Detention Basin	3- (ct) 2- 1-	Time (min)		80 90

Bryant Pharmacy Detention Pond

Stage-Storage

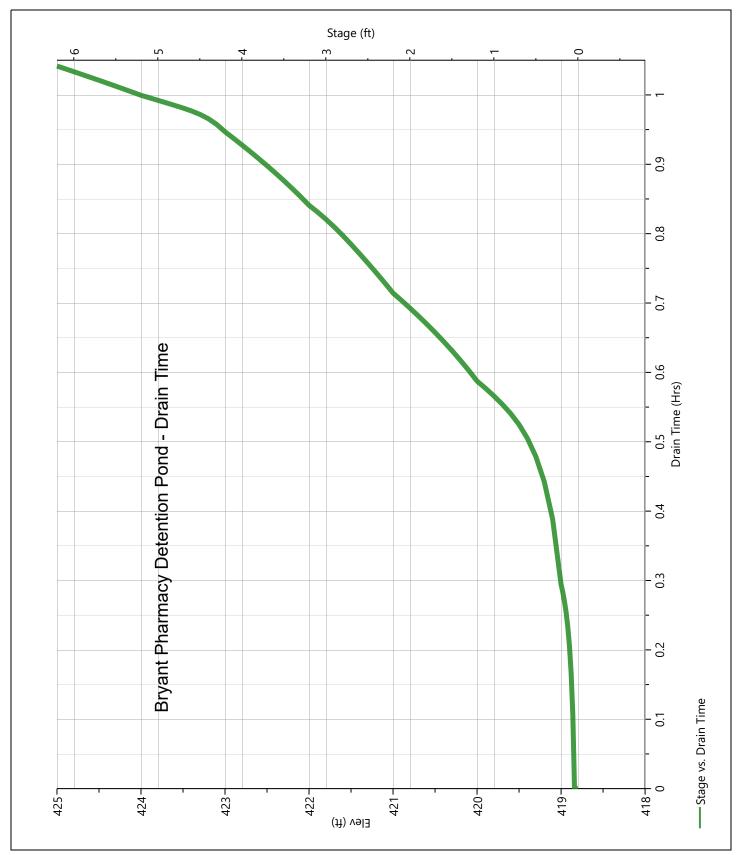
ırs			Stage / Stora	ge Table	
Input	Stage (ft)	Elevation (ft)	Contour Area (sqft)	Incr. Storage (cuft)	Total Storage (cuft)
418.80					0.000
100.00					0.000 41.8
					615
Ave End Area					1,534
					2,857
					4,638
					6,935
	6.20	425.00			9,802
			,	,	,
	Input 418.80 100.00 Ave End Area	Input Stage (ft) 418.80 100.00 0.00 0.20 Ave End Area 1.20 2.20 3.20 4.20 5.20	Input Stage (ft) Elevation (ft) 418.80 0.00 418.80 100.00 0.20 419.00 Ave End Area 1.20 420.00 2.20 421.00 3.20 422.00 4.20 423.00 5.20 424.00	Input Stage (ft) Elevation (ft) Contour Area (sqft) 418.80 0.00 418.80 4 100.00 0.20 419.00 414 Ave End Area 1.20 420.00 732 2.20 421.00 1,107 3.20 422.00 1,538 4.20 423.00 2,025 5.20 424.00 2,568	Input Stage (ft) Elevation (ft) Contour Area (sqft) Incr. Storage (cuft) 418.80 0.00 418.80 4 0.000 100.00 0.20 419.00 414 41.8 Ave End Area 1.20 420.00 732 573 2.20 421.00 1,107 920 3.20 422.00 1,538 1,323 4.20 423.00 2,025 1,782 5.20 424.00 2,568 2,297



Bryant Pharmacy Detention Pond

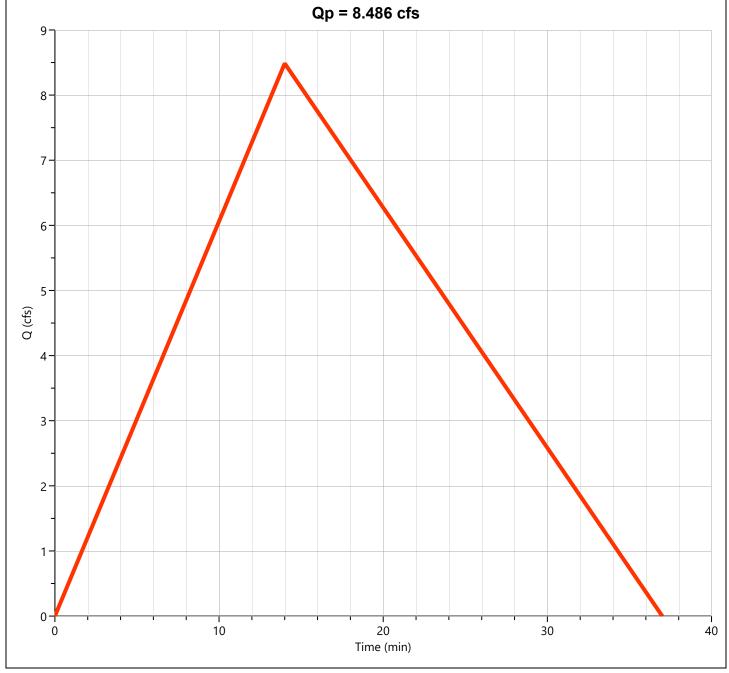
Stage-Discharge

Cultivant / Onificas	Cin Culturant		Orifice		Orifice Plate	
Culvert / Orifices	Cir Culvert	1 (m)	I (m) 2 (m) 3		Orifice Plate	
Rise, in	18	10	5		Orifice Dia, in	
Span, in	18	6	10		No. Orifices	
No. Barrels	1	1	1		Invert Elevation, ft	
Invert Elevation, ft	418.80	418.80	421.50		Height, ft	
Orifice Coefficient, Co	0.60	0.60	0.60		Orifice Coefficient, Co	
Length, ft	39					
Barrel Slope, %	1					
N-Value, n	0.013					
Waire	Riser	Weir			Anaillana	
Weirs	Riser	1	2	3	Ancillary	
Shape / Type	Circular				Exfiltration, in/hr	
Crest Elevation, ft	423					
Crest Length, ft	12.56					
Angle, deg						
Weir Coefficient, Cw	3.3					

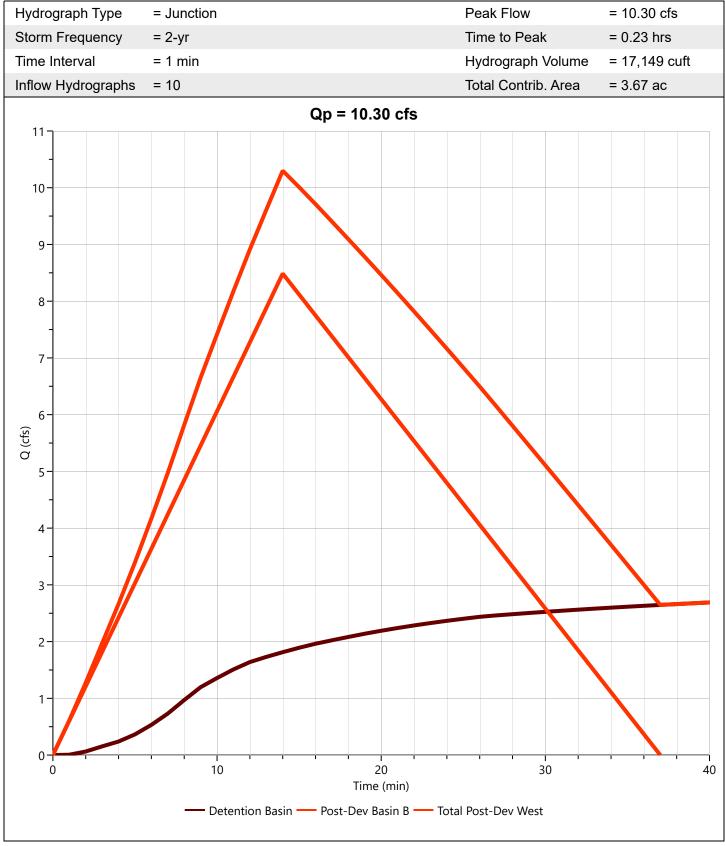

Bryant Pharmacy Detention Pond

Stage-Storage-Discharge Summary

Stage	Elev.	Storage	Culvert	C	Orifices, cf	s	Riser		Weirs, cfs		Pf Riser	Exfil	User	Total
(ft)	(ft)	(cuft)	(cfs)	1	2	3	(cfs)	1	2	3	(cfs)	(cfs)	(cfs)	(cfs)
0.00	418.80	0.000	0.000	0.000	0.000		0.000							0.000
0.20	419.00	41.8	0.115 ic	0.115	0.000		0.000							0.115
1.20	420.00	615	1.597 ic	1.597	0.000		0.000							1.597
2.20	421.00	1,534	2.444 ic	2.444	0.000		0.000							2.444
3.20	422.00	2,857	3.914 ic	3.011	0.903		0.000							3.914
4.20	423.00	4,638	5.369 oc	3.469	1.900		0.000							5.369
5.20	424.00	6,935	17.95 ic	0.000	0.000		0.000							17.95
6.20	425.00	9,802	19.86 ic	0.000	0.000		0.000							19.86

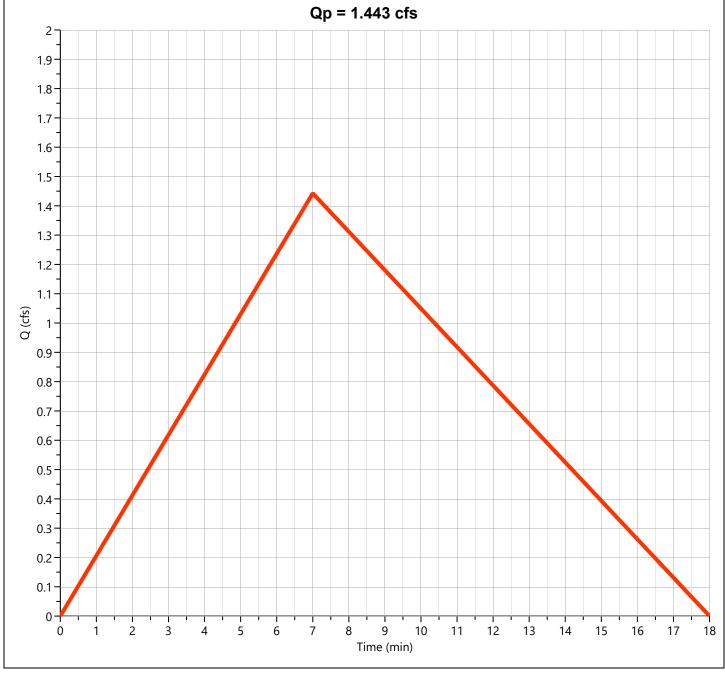

Bryant Pharmacy Detention Pond

Pond Drawdown

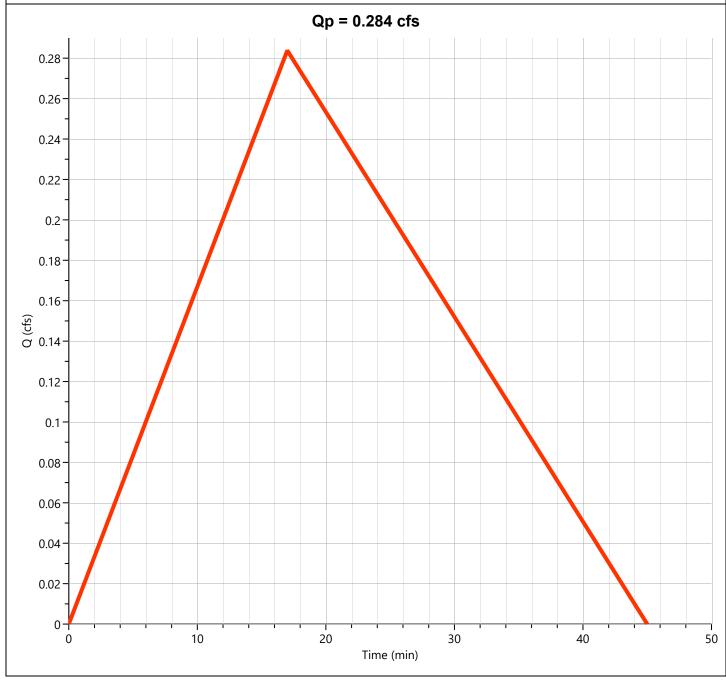


Post-Dev Basin B Hyd. No. 10

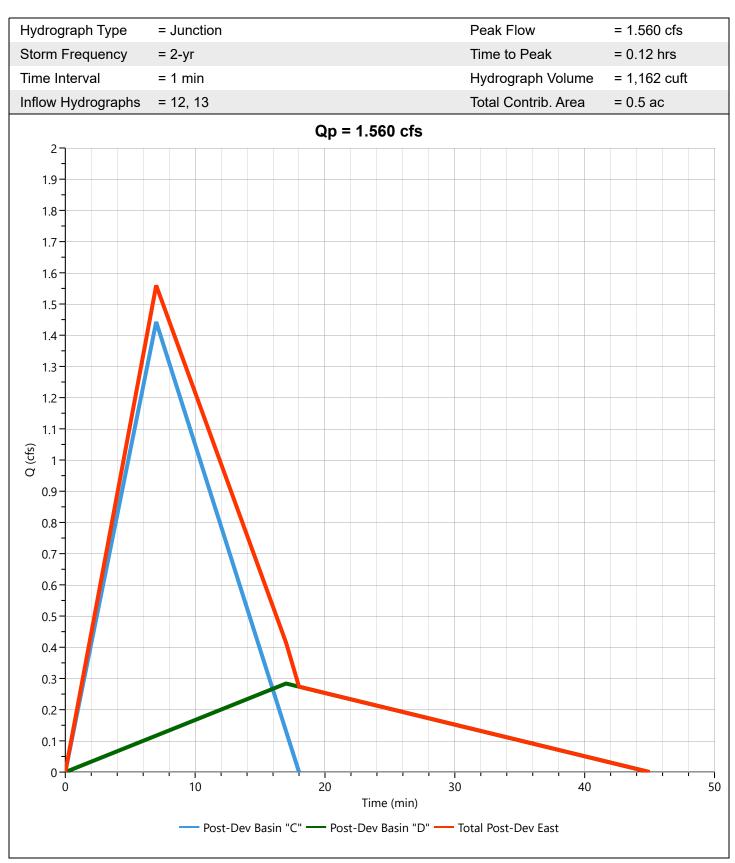
Hydrograph Type	= Rational	Peak Flow	= 8.486 cfs
Storm Frequency	= 2-yr	Time to Peak	= 0.23 hrs
Time Interval	= 1 min	Runoff Volume	= 9,516 cuft
Drainage Area	= 3.67 ac	Runoff Coeff.	= 0.60
Tc Method	= TR55	Time of Conc. (Tc)	= 14.0 min
IDF Curve	= City of Bryant IDF Curve.idf	Intensity	= 3.85 in/hr
Freq. Corr. Factor	= 1.00	Asc/Rec Limb Factors	s = 1/1.67



Total Post-Dev West

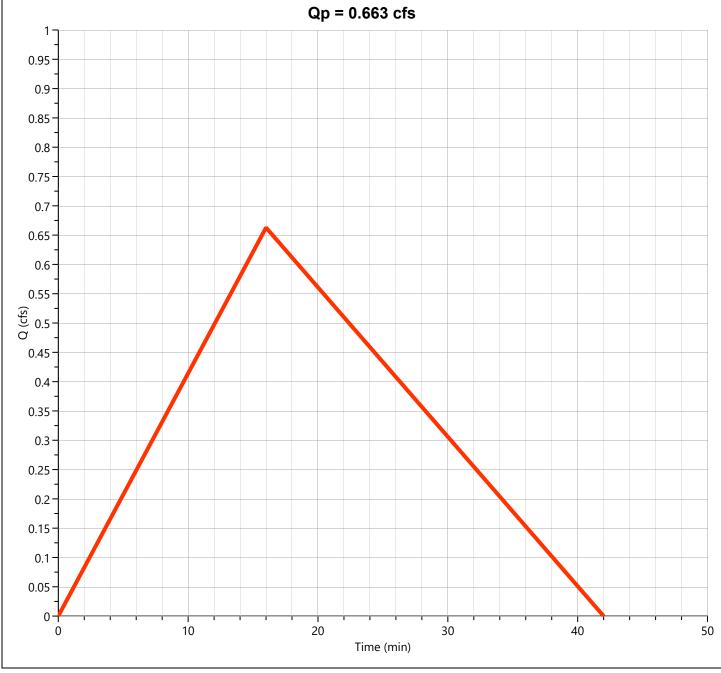

Post-Dev Basin "C"

Hydrograph Type	= Rational	Peak Flow	= 1.443 cfs
Storm Frequency	= 2-yr	Time to Peak	= 0.12 hrs
Time Interval	= 1 min	Runoff Volume	= 809 cuft
Drainage Area	= 0.38 ac	Runoff Coeff.	= 0.72
Tc Method	= TR55	Time of Conc. (Tc)	= 7.0 min
IDF Curve	= City of Bryant IDF Curve.idf	Intensity	= 5.27 in/hr
Freq. Corr. Factor	= 1.00	Asc/Rec Limb Factors	s = 1/1.67



Post-Dev Basin "D"

Hydrograph Type	= Rational	Peak Flow	= 0.284 cfs
Storm Frequency	= 2-yr	Time to Peak	= 0.28 hrs
Time Interval	= 1 min	Runoff Volume	= 386 cuft
Drainage Area	= 0.12 ac	Runoff Coeff.	= 0.67
Tc Method	= TR55	Time of Conc. (Tc)	= 17.0 min
IDF Curve	= City of Bryant IDF Curve.idf	Intensity	= 3.53 in/hr
Freq. Corr. Factor	= 1.00	Asc/Rec Limb Factors	s = 1/1.67

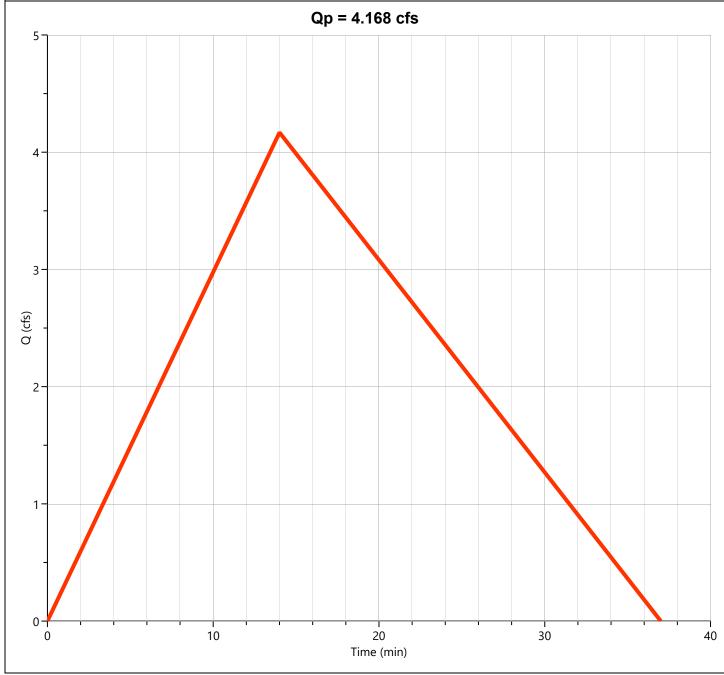


Total Post-Dev East

Post-Dev Basin "E"

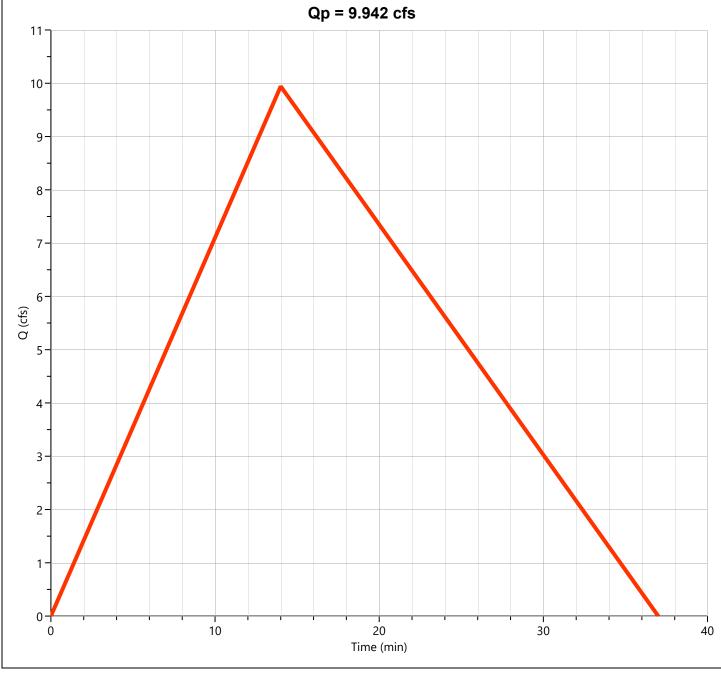
Hydrograph Type	= Rational	Peak Flow	= 0.663 cfs
Storm Frequency	= 2-yr	Time to Peak	= 0.27 hrs
Time Interval	= 1 min	Runoff Volume	= 849 cuft
Drainage Area	= 0.29 ac	Runoff Coeff.	= 0.63
Tc Method	= TR55	Time of Conc. (Tc)	= 16.0 min
IDF Curve	= City of Bryant IDF Curve.idf	Intensity	= 3.63 in/hr
Freq. Corr. Factor	= 1.00	Asc/Rec Limb Factors	s = 1/1.67

Hydrograph 10-yr Summary Hydrology Studio v 3.0.0.39

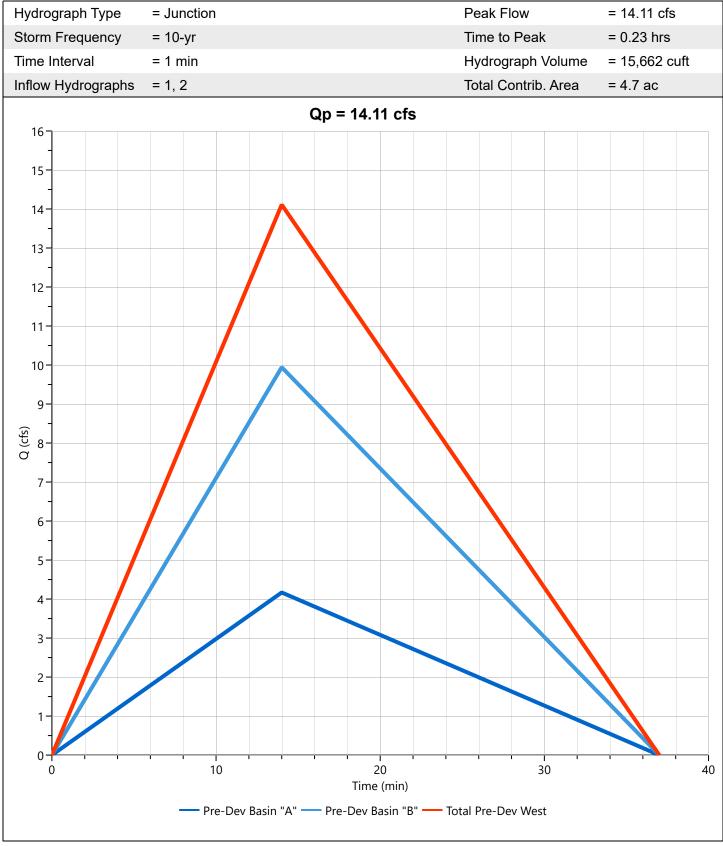

Project Name: Bryant Pharmacy File: Detention Calculation 11-13-25 FINAL.hys

11-13-2025

Hyd. No.	Hydrograph Type	Hydrograph Name	Peak Flow (cfs)	Time to Peak (hrs)	Hydrograph Volume (cuft)	Inflow Hyd(s)	Maximum Elevation (ft)	Maximum Storage (cuft)
1	Rational	Pre-Dev Basin "A"	4.168	0.23	4,674			
2	Rational	Pre-Dev Basin "B"	9.942	0.23	11,149			
3	Junction	Total Pre-Dev West	14.11	0.23	15,662	1, 2		
4	Rational	Pre-Dev Basin "C"	1.236	0.18	1,089			
5	Rational	Pre-Dev Basin "D"	1.353	0.25	1,626			
6	Junction	Total Pre-Dev East	2.314	0.25	2,699	4, 5		
7	Rational	Pre-Dev Basin "E"	1.314	0.32	1,999			
8	Mod Rational	Post-Dev Basin A	4.229	0.20	10,404			
9	Pond Route	Detention Basin	3.972	0.70	10,402	8	422.03	2,910
10	Rational	Post-Dev Basin B	11.38	0.23	12,764			
11	Junction	Total Post-Dev West	13.53	0.23	23,036	9, 10		
12	Rational	Post-Dev Basin "C"	1.931	0.12	1,083			
13	Rational	Post-Dev Basin "D"	0.381	0.28	519			
14	Junction	Total Post-Dev East	2.088	0.12	1,557	12, 13		

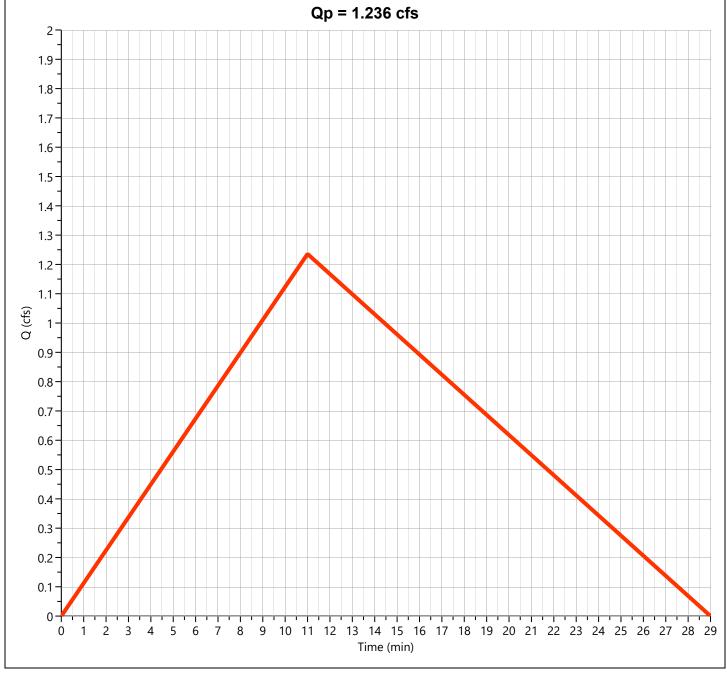

Pre-Dev Basin "A"

Hydrograph Type	= Rational	Peak Flow	= 4.168 cfs
Storm Frequency	= 10-yr	Time to Peak	= 0.23 hrs
Time Interval	= 1 min	Runoff Volume	= 4,674 cuft
Drainage Area	= 1.44 ac	Runoff Coeff.	= 0.56
Tc Method	= TR55	Time of Conc. (Tc)	= 14.0 min
IDF Curve	= City of Bryant IDF Curve.idf	Intensity	= 5.17 in/hr
Freq. Corr. Factor	= 1.00	Asc/Rec Limb Factor	rs = 1/1.67

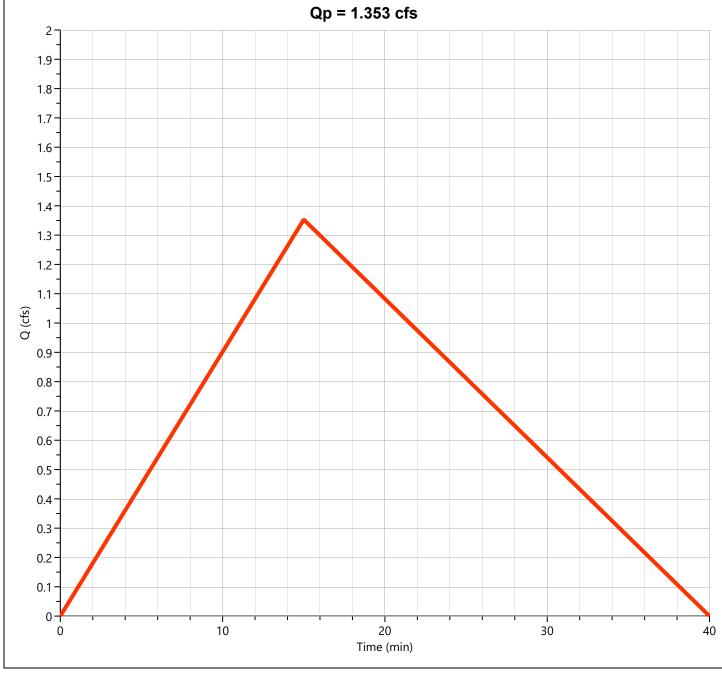


Pre-Dev Basin "B"

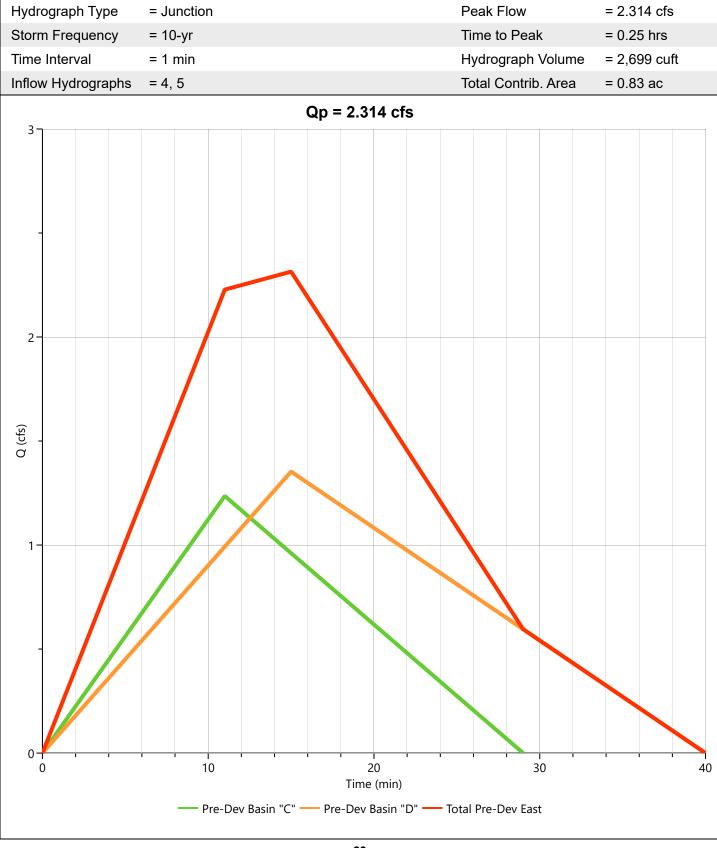
Hydrograph Type	= Rational	Peak Flow	= 9.942 cfs
Storm Frequency	= 10-yr	Time to Peak	= 0.23 hrs
Time Interval	= 1 min	Runoff Volume	= 11,149 cuft
Drainage Area	= 3.26 ac	Runoff Coeff.	= 0.59
Tc Method	= TR55	Time of Conc. (Tc)	= 14.0 min
IDF Curve	= City of Bryant IDF Curve.idf	Intensity	= 5.17 in/hr
Freq. Corr. Factor	= 1.00	Asc/Rec Limb Factors	s = 1/1.67



Total Pre-Dev West

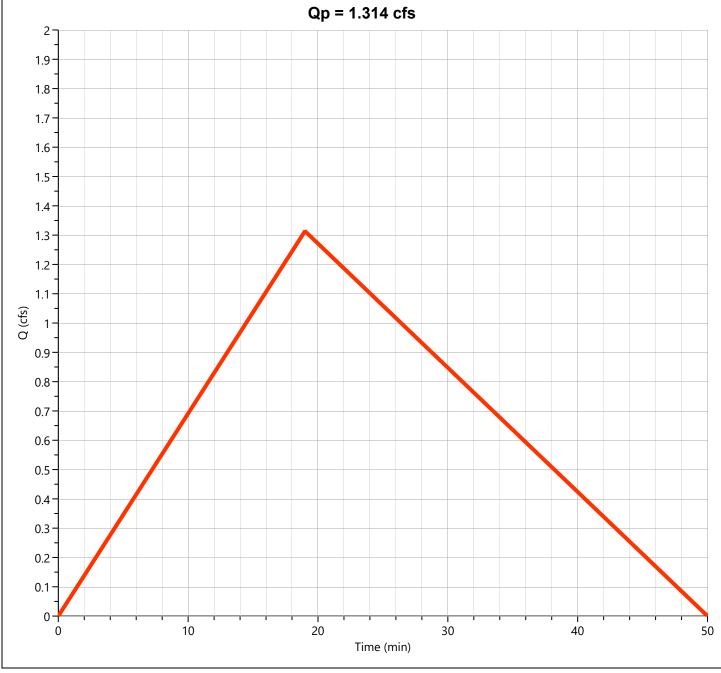

Pre-Dev Basin "C"

Hydrograph Type	= Rational	Peak Flow	= 1.236 cfs
Storm Frequency	= 10-yr	Time to Peak	= 0.18 hrs
Time Interval	= 1 min	Runoff Volume	= 1,089 cuft
Drainage Area	= 0.33 ac	Runoff Coeff.	= 0.65
Tc Method	= TR55	Time of Conc. (Tc)	= 11.0 min
IDF Curve	= City of Bryant IDF Curve.idf	Intensity	= 5.76 in/hr
Freq. Corr. Factor	= 1.00	Asc/Rec Limb Factors	s = 1/1.67



Pre-Dev Basin "D"

Hydrograph Type	= Rational	Peak Flow	= 1.353 cfs
Storm Frequency	= 10-yr	Time to Peak	= 0.25 hrs
Time Interval	= 1 min	Runoff Volume	= 1,626 cuft
Drainage Area	= 0.5 ac	Runoff Coeff.	= 0.54
Tc Method	= TR55	Time of Conc. (Tc)	= 15.0 min
IDF Curve	= City of Bryant IDF Curve.idf	Intensity	= 5.01 in/hr
Freq. Corr. Factor	= 1.00	Asc/Rec Limb Factors	s = 1/1.67



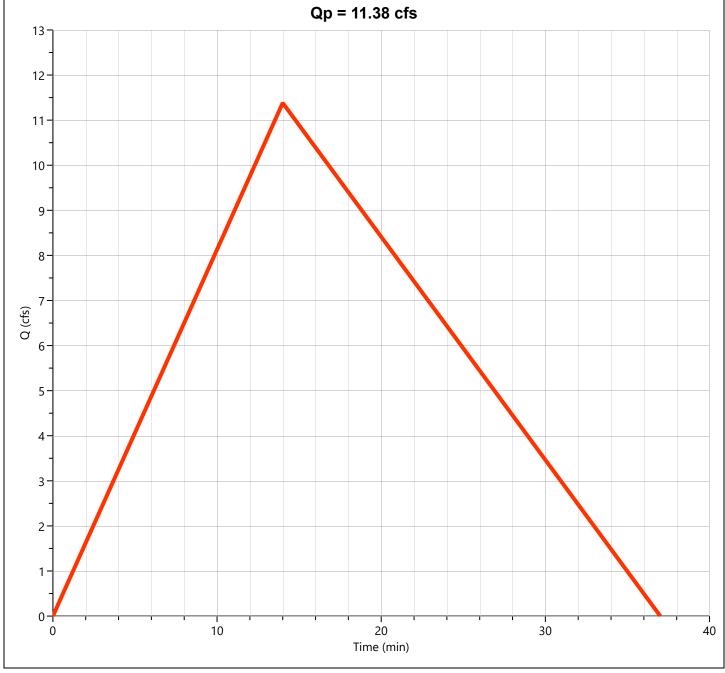
Total Pre-Dev East

Pre-Dev Basin "E"

Hydrograph Type	= Rational	Peak Flow	= 1.314 cfs
Storm Frequency	= 10-yr	Time to Peak	= 0.32 hrs
Time Interval	= 1 min	Runoff Volume	= 1,999 cuft
Drainage Area	= 0.53 ac	Runoff Coeff.	= 0.55
Tc Method	= TR55	Time of Conc. (Tc)	= 19.0 min
IDF Curve	= City of Bryant IDF Curve.idf	Intensity	= 4.51 in/hr
Freq. Corr. Factor	= 1.00	Asc/Rec Limb Factors	s = 1/1.67

Post-Dev Basin A

I bodos and U.T.	Mad Dational	Da ala Ela:	4.000 5
Hydrograph Type	= Mod Rational	Peak Flow	= 4.229 cfs
Storm Frequency	= 10-yr	Time to Peak	= 0.20 hrs
Time Interval	= 1 min	Runoff Volume	= 10,404 cuft
Drainage Area	= 1.56 ac	Runoff Coeff.	= 0.85
Tc Method	= User	Time of Conc. (Tc)	= 12.0 min
IDF Curve	= City of Bryant IDF Curve.idf	Intensity	= 3.19 in/hr
Freq. Corr. Factor	= 1.00	Storm Duration	= 3.42 x Tc
Target Q	= 0.000 cfs	Required Storage	= 0.000 cuft
	Qp = 4.229 cfs		
5			
3- (cg) - 2-			
1-			
0	10 20 30 Time (min)	40	50 6

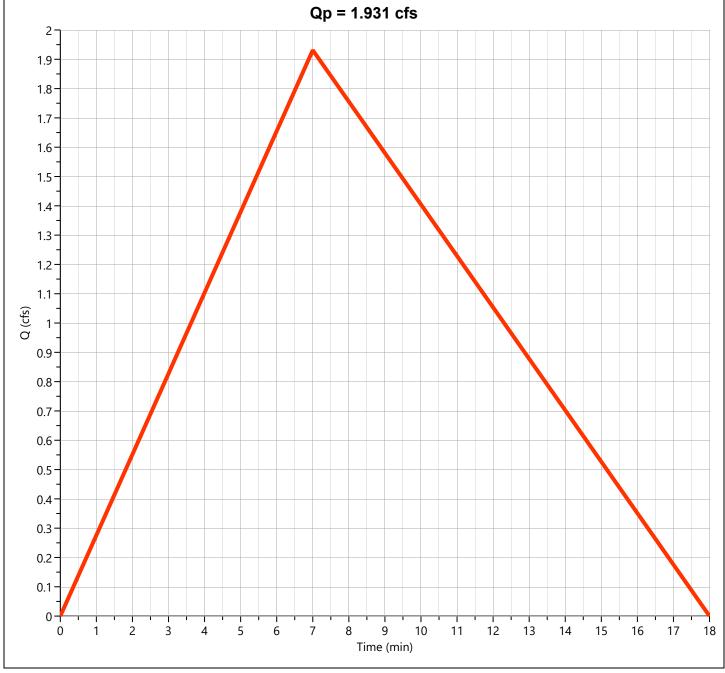


Detention Basin Hyd. No. 9

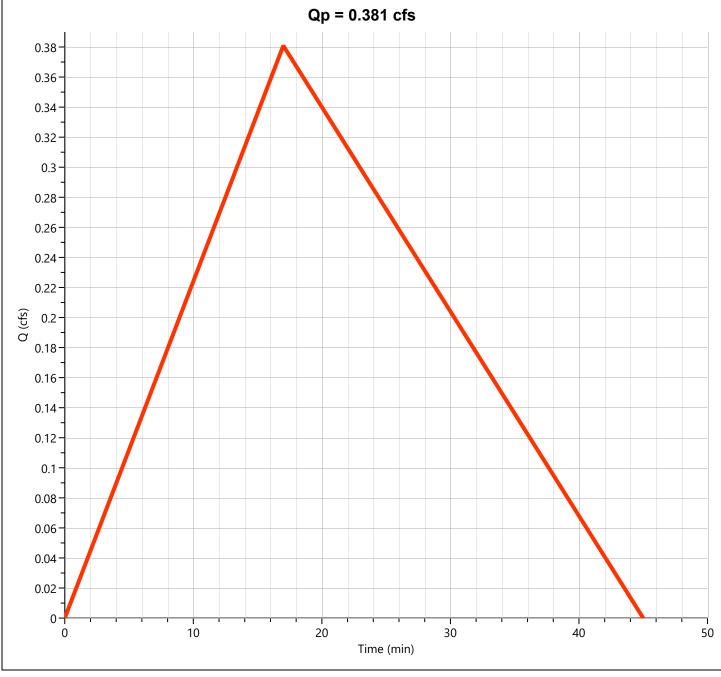
Hydrograph Type = Pond Route Storm Frequency = 10-yr Time Interval = 1 min	Peak Flow Time to Peak Hydrograph Volume Max. Elevation	= 3.972 cfs = 0.70 hrs = 10,402 cuft
	Hydrograph Volume	
Time Interval = 1 min		= 10,402 cuft
	Max. Elevation	
Inflow Hydrograph = 8 - Post-Dev Basin A		= 422.03 ft
Pond Name = Bryant Pharmacy Detention Pond	Max. Storage	= 2,910 cuft
Pond Routing by Storage Indication Method	Center of ma	ss detention time = 11 min
Qp = 3.972 cfs		
4- 3- 2- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1-	50 70 80	90 100
Req'd Stor — Post-Dev Basin A — D	Petention Basin	
, in the second		

Post-Dev Basin B

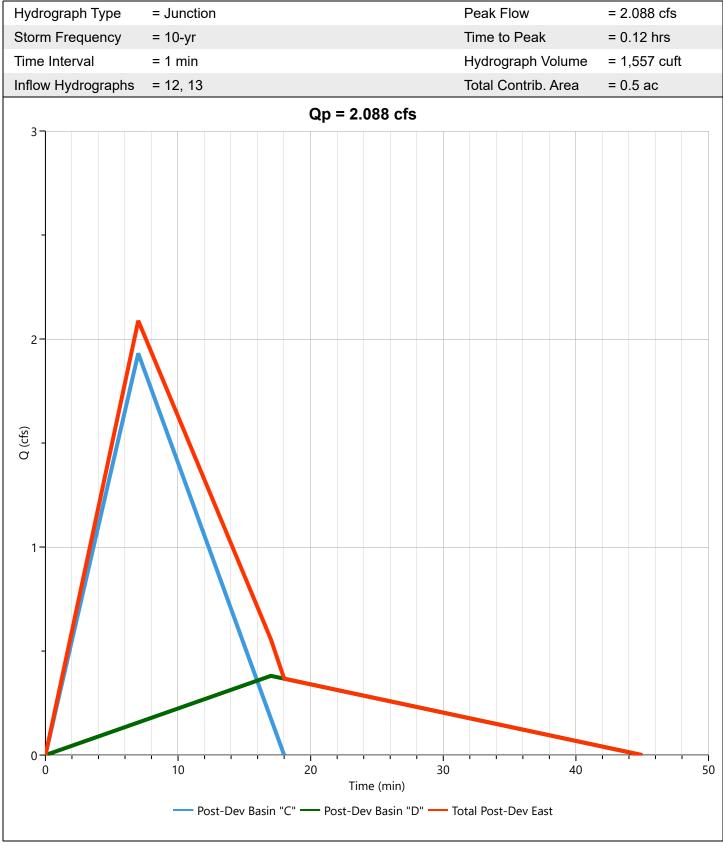
Hydrograph Type	= Rational	Peak Flow	= 11.38 cfs
Storm Frequency	= 10-yr	Time to Peak	= 0.23 hrs
Time Interval	= 1 min	Runoff Volume	= 12,764 cuft
Drainage Area	= 3.67 ac	Runoff Coeff.	= 0.60
Tc Method	= TR55	Time of Conc. (Tc)	= 14.0 min
IDF Curve	= City of Bryant IDF Curve.idf	Intensity	= 5.17 in/hr
Freq. Corr. Factor	= 1.00	Asc/Rec Limb Factors	s = 1/1.67



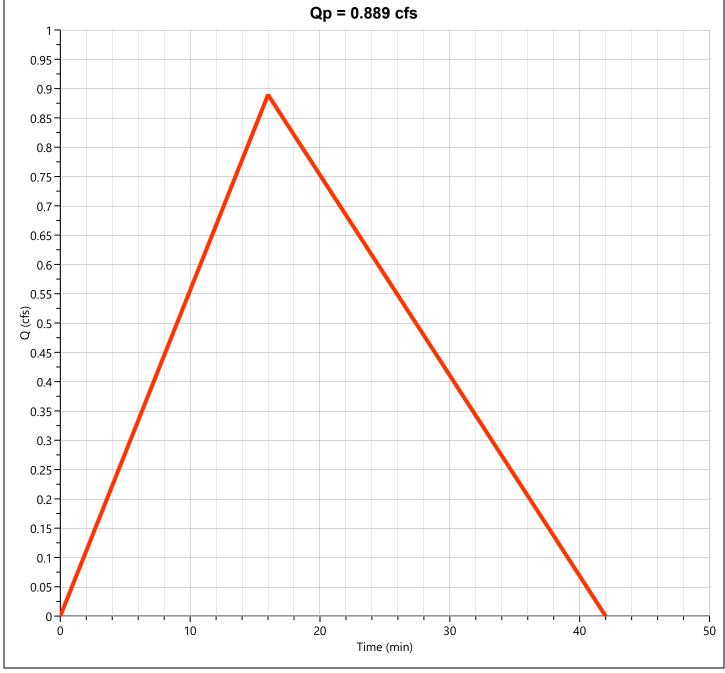
Total Post-Dev West


Post-Dev Basin "C"

Hydrograph Type	= Rational	Peak Flow	= 1.931 cfs
Storm Frequency	= 10-yr	Time to Peak	= 0.12 hrs
Time Interval	= 1 min	Runoff Volume	= 1,083 cuft
Drainage Area	= 0.38 ac	Runoff Coeff.	= 0.72
Tc Method	= TR55	Time of Conc. (Tc)	= 7.0 min
IDF Curve	= City of Bryant IDF Curve.idf	Intensity	= 7.06 in/hr
Freq. Corr. Factor	= 1.00	Asc/Rec Limb Factors	s = 1/1.67


Post-Dev Basin "D"

Hydrograph Type	= Rational	Peak Flow	= 0.381 cfs
Storm Frequency	= 10-yr	Time to Peak	= 0.28 hrs
Time Interval	= 1 min	Runoff Volume	= 519 cuft
Drainage Area	= 0.12 ac	Runoff Coeff.	= 0.67
Tc Method	= TR55	Time of Conc. (Tc)	= 17.0 min
IDF Curve	= City of Bryant IDF Curve.idf	Intensity	= 4.74 in/hr
Freq. Corr. Factor	= 1.00	Asc/Rec Limb Factor	s = 1/1.67

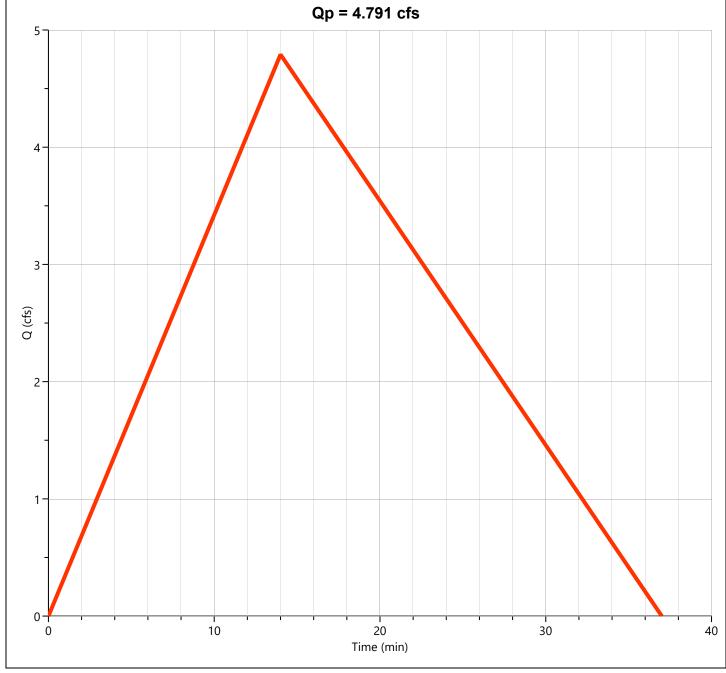

11 13 2023

Total Post-Dev East

Post-Dev Basin "E"

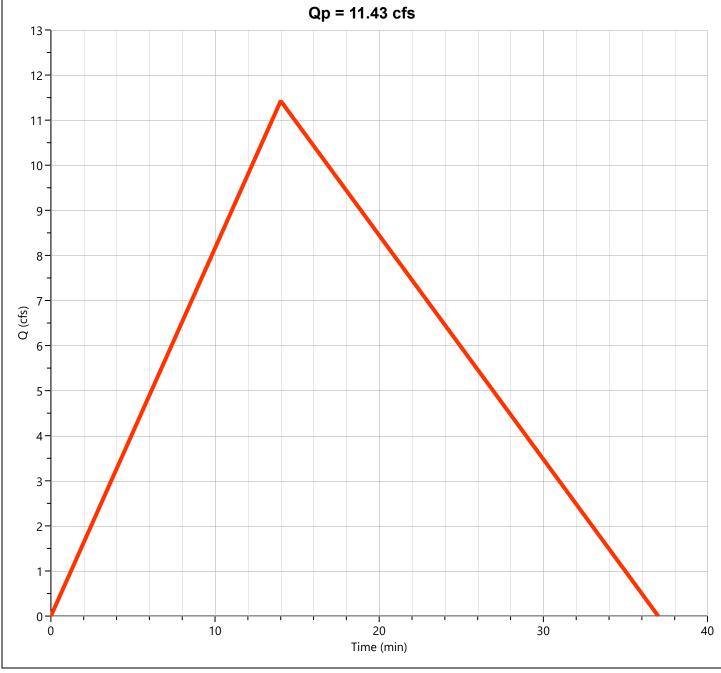
Hydrograph Type	= Rational	Peak Flow	= 0.889 cfs
Storm Frequency	= 10-yr	Time to Peak	= 0.27 hrs
Time Interval	= 1 min	Runoff Volume	= 1,140 cuft
Drainage Area	= 0.29 ac	Runoff Coeff.	= 0.63
Tc Method	= TR55	Time of Conc. (Tc)	= 16.0 min
IDF Curve	= City of Bryant IDF Curve.idf	Intensity	= 4.87 in/hr
Freq. Corr. Factor	= 1.00	Asc/Rec Limb Factor	rs = 1/1.67

Hydrograph 25-yr Summary Hydrology Studio v 3.0.0.39

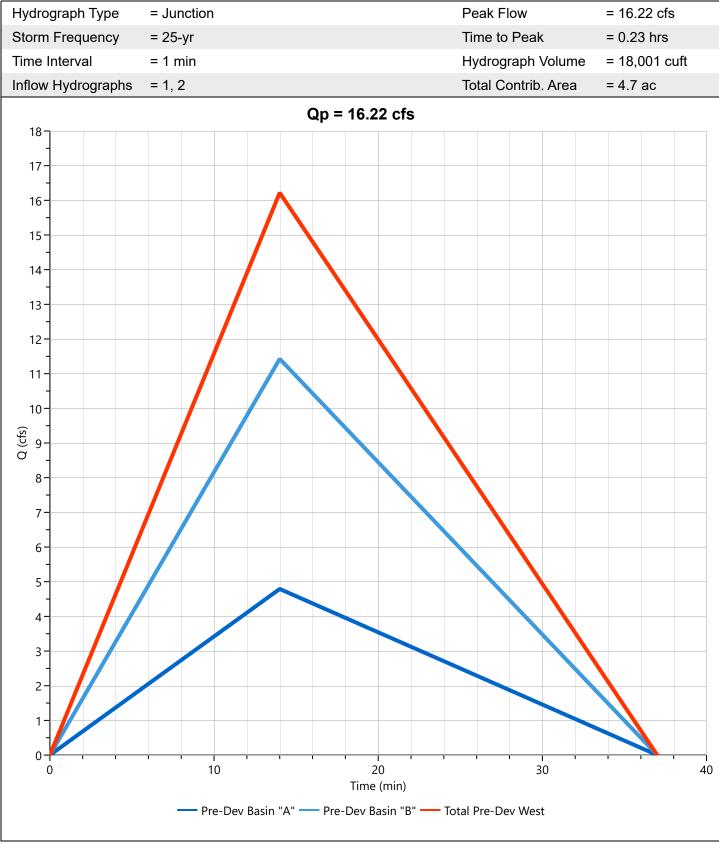

Project Name: Bryant Pharmacy File: Detention Calculation 11-13-25 FINAL.hys

11-13-2025

Hyd. No.	Hydrograph Type	Hydrograph Name	Peak Flow (cfs)	Time to Peak (hrs)	Hydrograph Volume (cuft)	Inflow Hyd(s)	Maximum Elevation (ft)	Maximum Storage (cuft)
1	Rational	Pre-Dev Basin "A"	4.791	0.23	5,372			
2	Rational	Pre-Dev Basin "B"	11.43	0.23	12,814			
3	Junction	Total Pre-Dev West	16.22	0.23	18,001	1, 2		
4	Rational	Pre-Dev Basin "C"	1.420	0.18	1,251			
5	Rational	Pre-Dev Basin "D"	1.555	0.25	1,868			
6	Junction	Total Pre-Dev East	2.660	0.25	3,102	4, 5		
7	Rational	Pre-Dev Basin "E"	1.510	0.32	2,298			
8	Mod Rational	Post-Dev Basin A	4.864	0.20	11,965			
9	Pond Route	Detention Basin	4.449	0.70	11,963	8	422.31	3,400
10	Rational	Post-Dev Basin B	13.08	0.23	14,670			
11	Junction	Total Post-Dev West	15.42	0.23	26,484	9, 10		
12	Rational	Post-Dev Basin "C"	2.218	0.12	1,244			
13	Rational	Post-Dev Basin "D"	0.438	0.28	596			
14	Junction	Total Post-Dev East	2.399	0.12	1,789	12, 13		
15	Rational	Post-Dev Basin "E"	1.022	0.27	1,310			

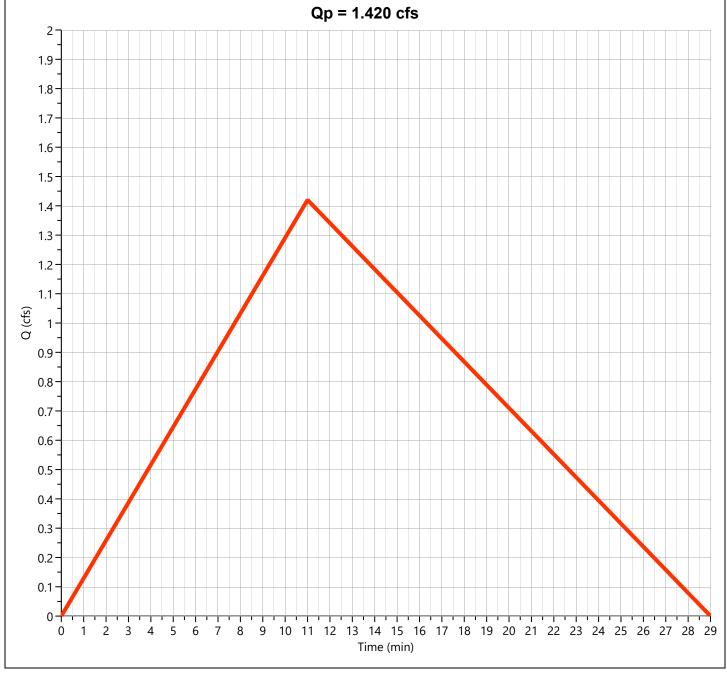

Pre-Dev Basin "A"

Hydrograph Type	= Rational	Peak Flow	= 4.791 cfs
Storm Frequency	= 25-yr	Time to Peak	= 0.23 hrs
Time Interval	= 1 min	Runoff Volume	= 5,372 cuft
Drainage Area	= 1.44 ac	Runoff Coeff.	= 0.56
Tc Method	= TR55	Time of Conc. (Tc)	= 14.0 min
IDF Curve	= City of Bryant IDF Curve.idf	Intensity	= 5.94 in/hr
Freq. Corr. Factor	= 1.00	Asc/Rec Limb Factors	s = 1/1.67

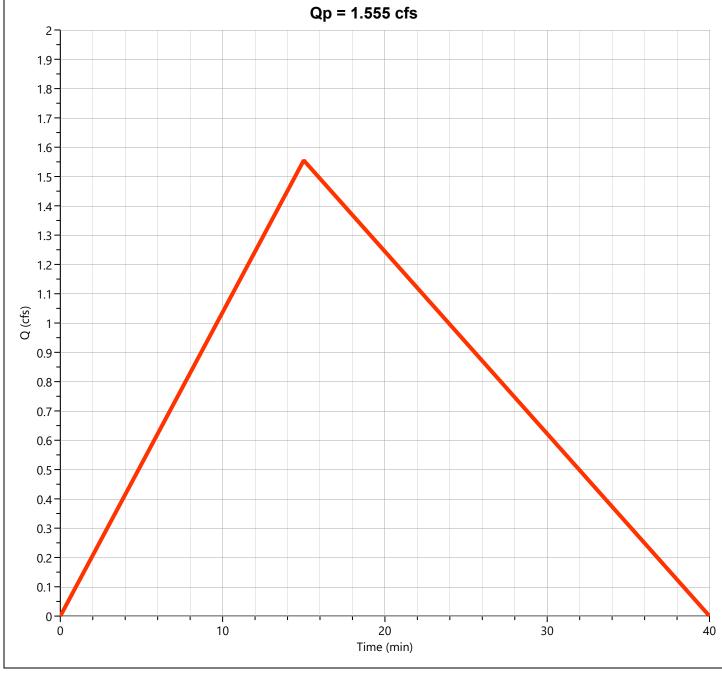


Pre-Dev Basin "B"

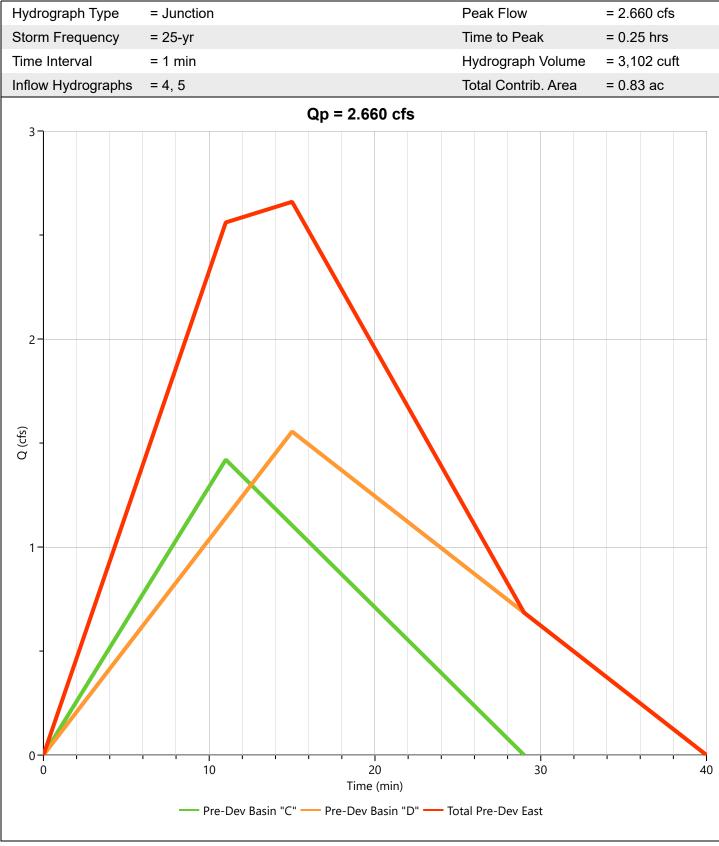
Hydrograph Type	= Rational	Peak Flow	= 11.43 cfs
Storm Frequency	= 25-yr	Time to Peak	= 0.23 hrs
Time Interval	= 1 min	Runoff Volume	= 12,814 cuft
Drainage Area	= 3.26 ac	Runoff Coeff.	= 0.59
Tc Method	= TR55	Time of Conc. (Tc)	= 14.0 min
IDF Curve	= City of Bryant IDF Curve.idf	Intensity	= 5.94 in/hr
Freq. Corr. Factor	= 1.00	Asc/Rec Limb Factors	s = 1/1.67



Total Pre-Dev West

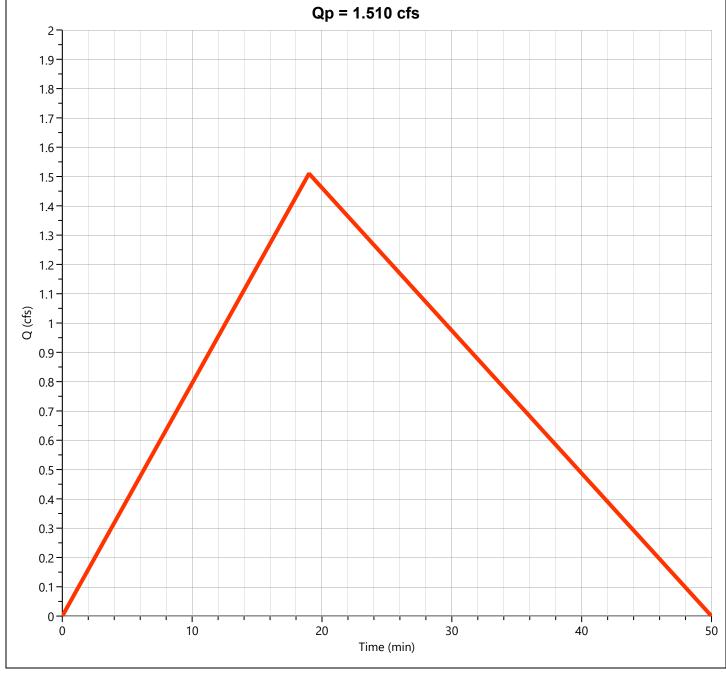

Pre-Dev Basin "C"

Hydrograph Type	= Rational	Peak Flow	= 1.420 cfs
Storm Frequency	= 25-yr	Time to Peak	= 0.18 hrs
Time Interval	= 1 min	Runoff Volume	= 1,251 cuft
Drainage Area	= 0.33 ac	Runoff Coeff.	= 0.65
Tc Method	= TR55	Time of Conc. (Tc)	= 11.0 min
IDF Curve	= City of Bryant IDF Curve.idf	Intensity	= 6.62 in/hr
Freq. Corr. Factor	= 1.00	Asc/Rec Limb Factors	s = 1/1.67



Pre-Dev Basin "D"

Hydrograph Type	= Rational	Peak Flow	= 1.555 cfs
Storm Frequency	= 25-yr	Time to Peak	= 0.25 hrs
Time Interval	= 1 min	Runoff Volume	= 1,868 cuft
Drainage Area	= 0.5 ac	Runoff Coeff.	= 0.54
Tc Method	= TR55	Time of Conc. (Tc)	= 15.0 min
IDF Curve	= City of Bryant IDF Curve.idf	Intensity	= 5.76 in/hr
Freq. Corr. Factor	= 1.00	Asc/Rec Limb Factor	s = 1/1.67



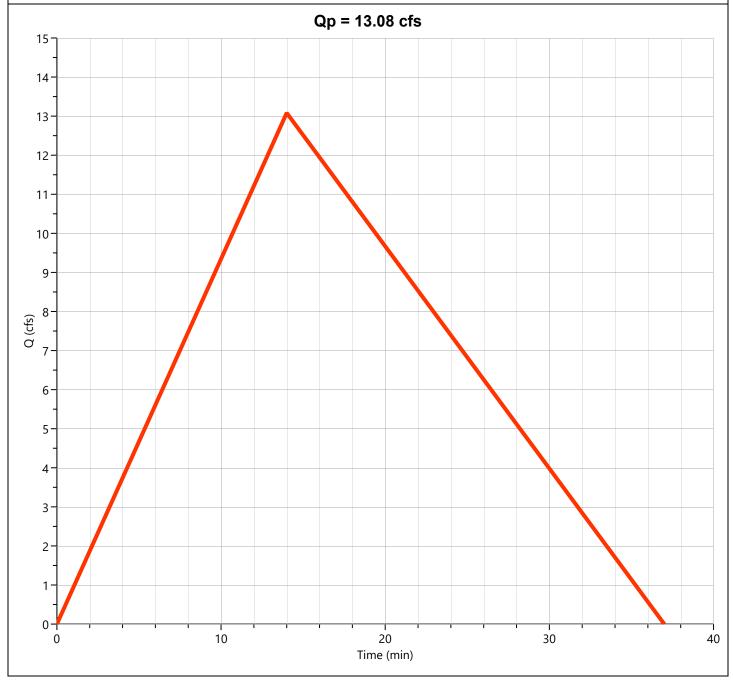
Total Pre-Dev East

Pre-Dev Basin "E"

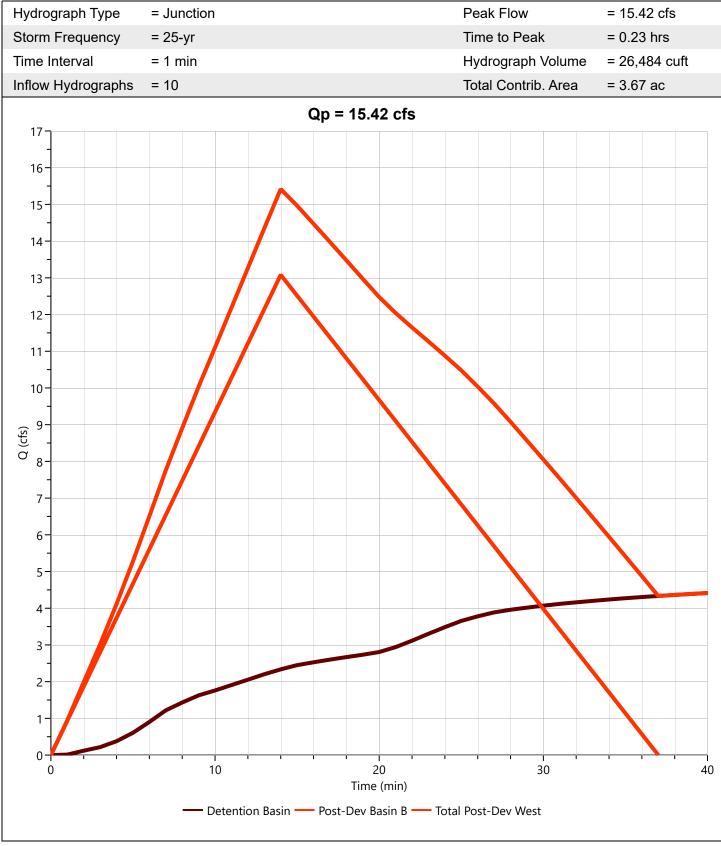
Hydrograph Type	= Rational	Peak Flow	= 1.510 cfs
Storm Frequency	= 25-yr	Time to Peak	= 0.32 hrs
Time Interval	= 1 min	Runoff Volume	= 2,298 cuft
Drainage Area	= 0.53 ac	Runoff Coeff.	= 0.55
Tc Method	= TR55	Time of Conc. (Tc)	= 19.0 min
IDF Curve	= City of Bryant IDF Curve.idf	Intensity	= 5.18 in/hr
Freq. Corr. Factor	= 1.00	Asc/Rec Limb Factor	s = 1/1.67

Post-Dev Basin A

<u> </u>			
Hydrograph Type	= Mod Rational	Peak Flow	= 4.864 cfs
Storm Frequency	= 25-yr	Time to Peak	= 0.20 hrs
Time Interval	= 1 min	Runoff Volume	= 11,965 cuft
Drainage Area	= 1.56 ac	Runoff Coeff.	= 0.85
Tc Method	= User	Time of Conc. (Tc)	= 12.0 min
IDF Curve	= City of Bryant IDF Curve.idf	Intensity	= 3.67 in/hr
Freq. Corr. Factor	= 1.00	Storm Duration	= 3.42 x Tc
Target Q	= 0.000 cfs	Required Storage	= 0.000 cuft
	Qp = 4.864 cfs		
4-			
3 - C(tz)			
1			
0	10 20 30 Time (min)	40	50 60

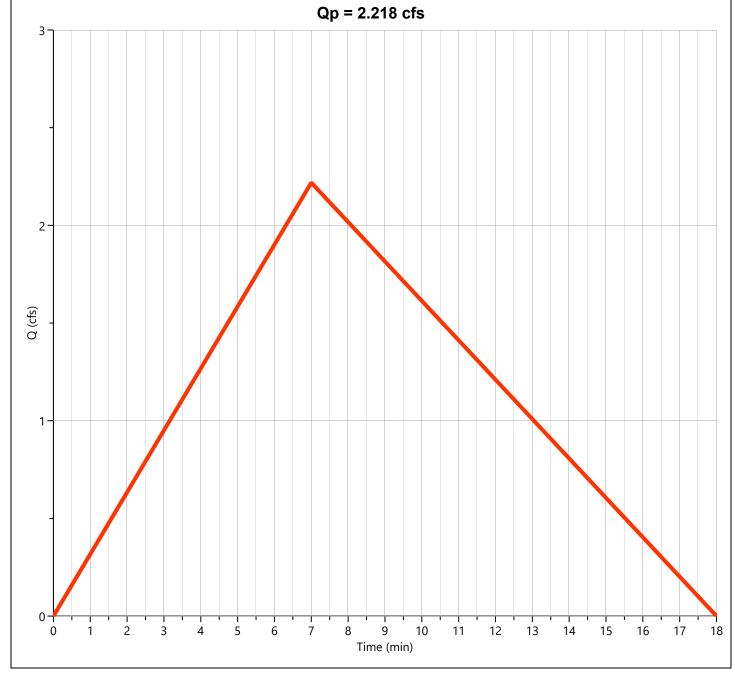

Detention Basin

Hydrograph Type	= Pond Route	Peak Flow	= 4.449 cfs
Storm Frequency	= 25-yr	Time to Peak	= 0.70 hrs
Time Interval	= 1 min	Hydrograph Volume	= 11,963 cuft
	= 8 - Post-Dev Basin A	Max. Elevation	= 422.31 ft
Inflow Hydrograph Pond Name			
	= Bryant Pharmacy Detention Pond	Max. Storage	= 3,400 cuft ss detention time = 11 min
Pond Routing by Storage Ind		Center of ma	ss detention time = 11 min
5 –	Qp = 4.449 cfs		
3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 -			
	20 30 40 50	60 70 80	90 100
U IU	20 30 40 50 Time (min)	00 70 80	90 100
	Req'd Stor — Post-Dev Basin A —	Detention Basin	
	- 4		

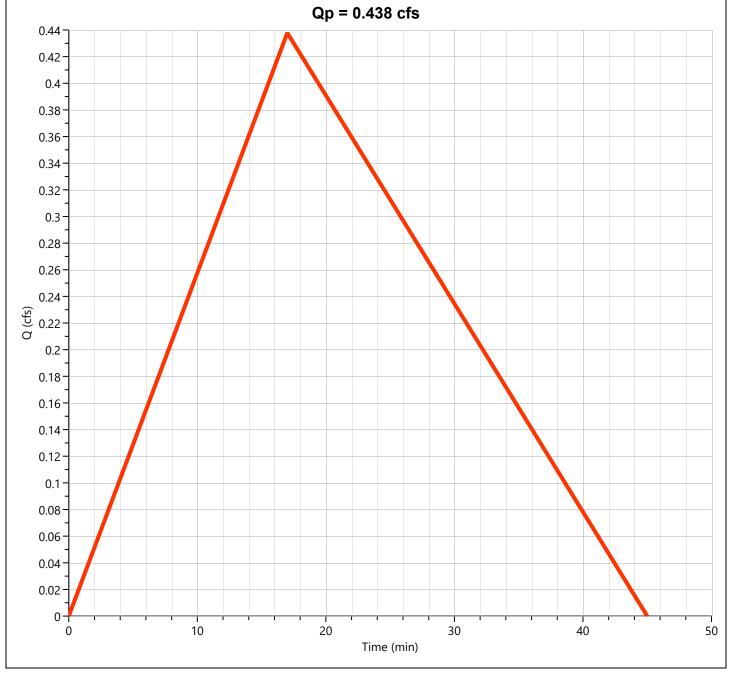

Hyd. No. 10

Post-Dev Basin B

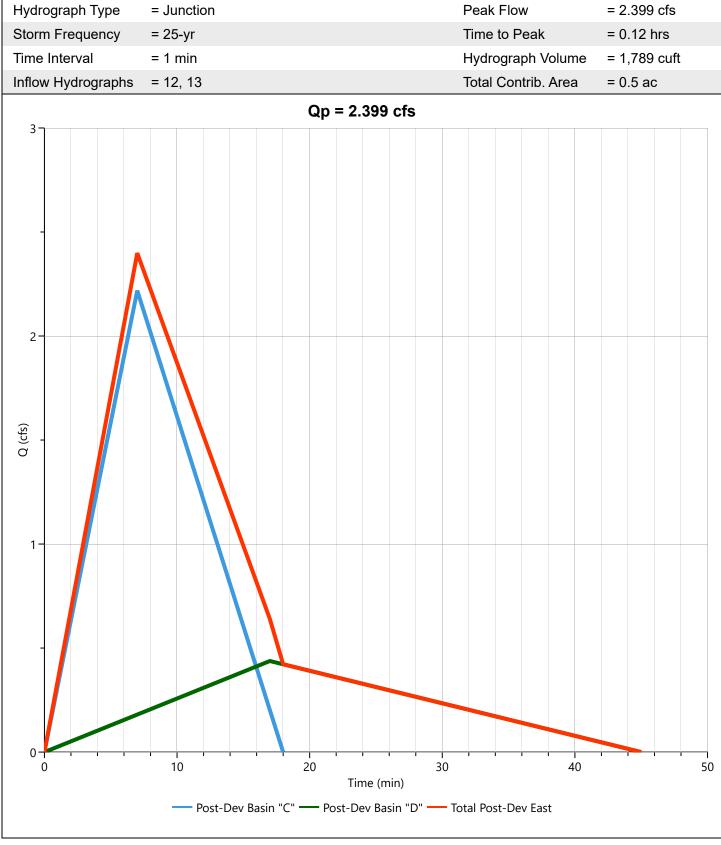
Hydrograph Type	= Rational	Peak Flow	= 13.08 cfs
Storm Frequency	= 25-yr	Time to Peak	= 0.23 hrs
Time Interval	= 1 min	Runoff Volume	= 14,670 cuft
Drainage Area	= 3.67 ac	Runoff Coeff.	= 0.60
Tc Method	= TR55	Time of Conc. (Tc)	= 14.0 min
IDF Curve	= City of Bryant IDF Curve.idf	Intensity	= 5.94 in/hr
Freq. Corr. Factor	= 1.00	Asc/Rec Limb Factors	s = 1/1.67



Total Post-Dev West

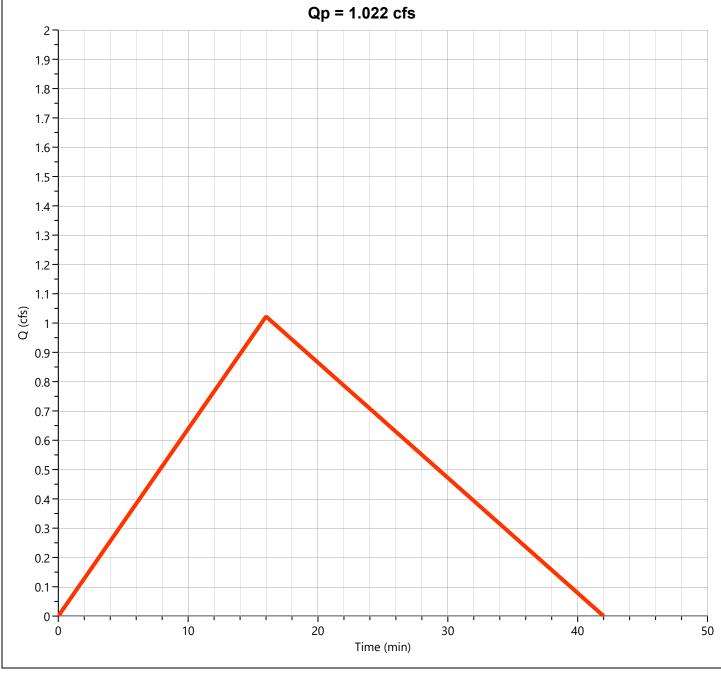

Post-Dev Basin "C"

Hydrograph Type	= Rational	Peak Flow	= 2.218 cfs
Storm Frequency	= 25-yr	Time to Peak	= 0.12 hrs
Time Interval	= 1 min	Runoff Volume	= 1,244 cuft
Drainage Area	= 0.38 ac	Runoff Coeff.	= 0.72
Tc Method	= TR55	Time of Conc. (Tc)	= 7.0 min
IDF Curve	= City of Bryant IDF Curve.idf	Intensity	= 8.11 in/hr
Freq. Corr. Factor	= 1.00	Asc/Rec Limb Factors	s = 1/1.67



Post-Dev Basin "D"

Hydrograph Type	= Rational	Peak Flow	= 0.438 cfs
Storm Frequency	= 25-yr	Time to Peak	= 0.28 hrs
Time Interval	= 1 min	Runoff Volume	= 596 cuft
Drainage Area	= 0.12 ac	Runoff Coeff.	= 0.67
Tc Method	= TR55	Time of Conc. (Tc)	= 17.0 min
IDF Curve	= City of Bryant IDF Curve.idf	Intensity	= 5.45 in/hr
Freq. Corr. Factor	= 1.00	Asc/Rec Limb Factor	s = 1/1.67

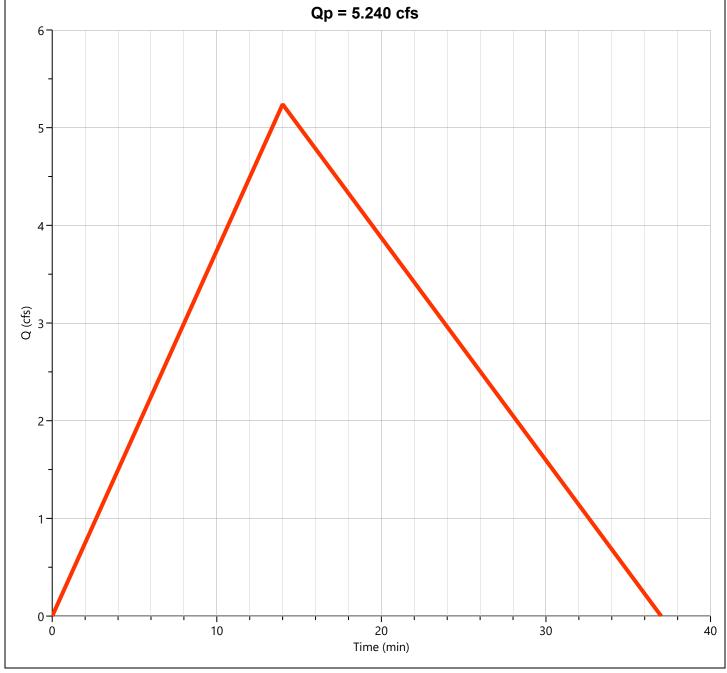


Total Post-Dev East

Post-Dev Basin "E"

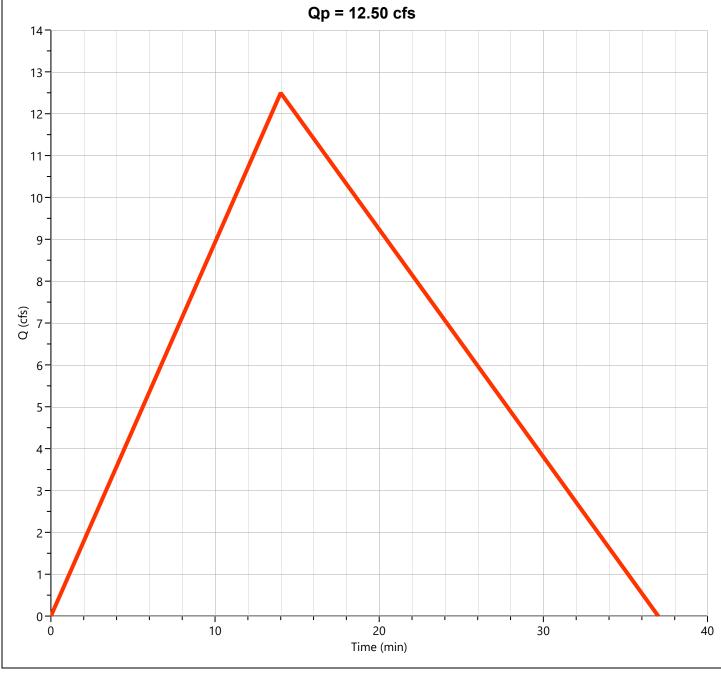
Hydrograph Type	= Rational	Peak Flow	= 1.022 cfs
Storm Frequency	= 25-yr	Time to Peak	= 0.27 hrs
Time Interval	= 1 min	Runoff Volume	= 1,310 cuft
Drainage Area	= 0.29 ac	Runoff Coeff.	= 0.63
Tc Method	= TR55	Time of Conc. (Tc)	= 16.0 min
IDF Curve	= City of Bryant IDF Curve.idf	Intensity	= 5.60 in/hr
Freq. Corr. Factor	= 1.00	Asc/Rec Limb Factors	s = 1/1.67

Hydrograph 50-yr Summary

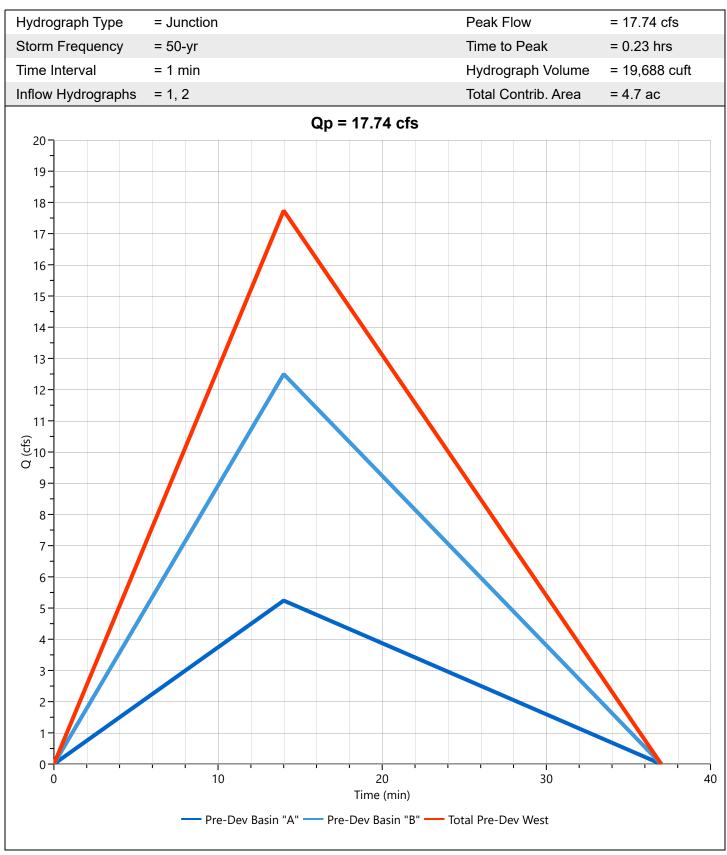

Project Name: Bryant Pharmacy File: Detention Calculation 11-13-25 FINAL.hys

11-13-2025

Hyd. No.	Hydrograph Type	Hydrograph Name	Peak Flow (cfs)	Time to Peak (hrs)	Hydrograph Volume (cuft)	Inflow Hyd(s)	Maximum Elevation (ft)	Maximum Storage (cuft)
1	Rational	Pre-Dev Basin "A"	5.240	0.23	5,876			
2	Rational	Pre-Dev Basin "B"	12.50	0.23	14,015			
3	Junction	Total Pre-Dev West	17.74	0.23	19,688	1, 2		
4	Rational	Pre-Dev Basin "C"	1.553	0.18	1,368			
5	Rational	Pre-Dev Basin "D"	1.701	0.25	2,044			
6	Junction	Total Pre-Dev East	2.909	0.25	3,392	4, 5		
7	Rational	Pre-Dev Basin "E"	1.652	0.32	2,514			
8	Mod Rational	Post-Dev Basin A	5.327	0.20	13,104			
9	Pond Route	Detention Basin	4.789	0.70	13,102	8	422.54	3,812
10	Rational	Post-Dev Basin B	14.31	0.23	16,045			
11	Junction	Total Post-Dev West	16.77	0.23	28,984	9, 10		
12	Rational	Post-Dev Basin "C"	2.424	0.12	1,359			
13	Rational	Post-Dev Basin "D"	0.479	0.28	652			
14	Junction	Total Post-Dev East	2.621	0.12	1,956	12, 13		
15	Rational	Post-Dev Basin "E"	1.118	0.27	1,433			

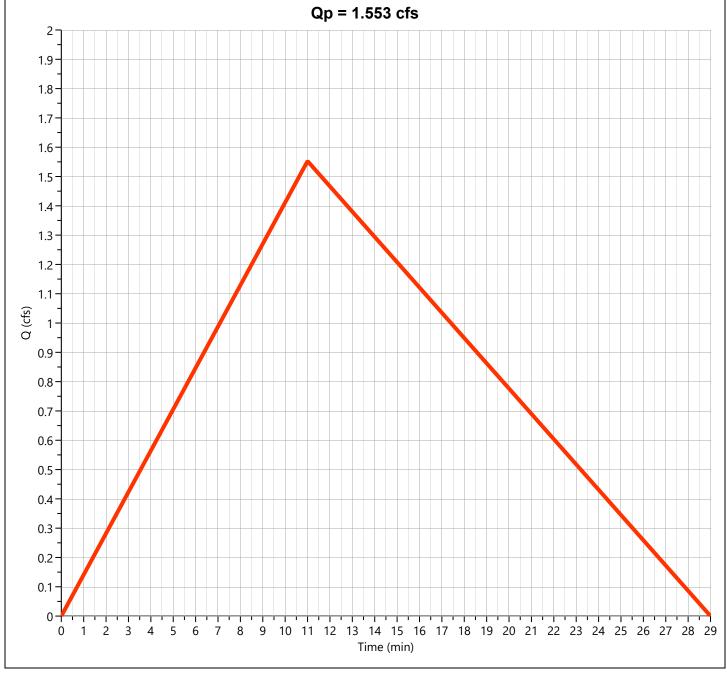

Pre-Dev Basin "A"

Hydrograph Type	= Rational	Peak Flow	= 5.240 cfs
Storm Frequency	= 50-yr	Time to Peak	= 0.23 hrs
Time Interval	= 1 min	Runoff Volume	= 5,876 cuft
Drainage Area	= 1.44 ac	Runoff Coeff.	= 0.56
Tc Method	= TR55	Time of Conc. (Tc)	= 14.0 min
IDF Curve	= City of Bryant IDF Curve.idf	Intensity	= 6.50 in/hr
Freq. Corr. Factor	= 1.00	Asc/Rec Limb Factors	s = 1/1.67

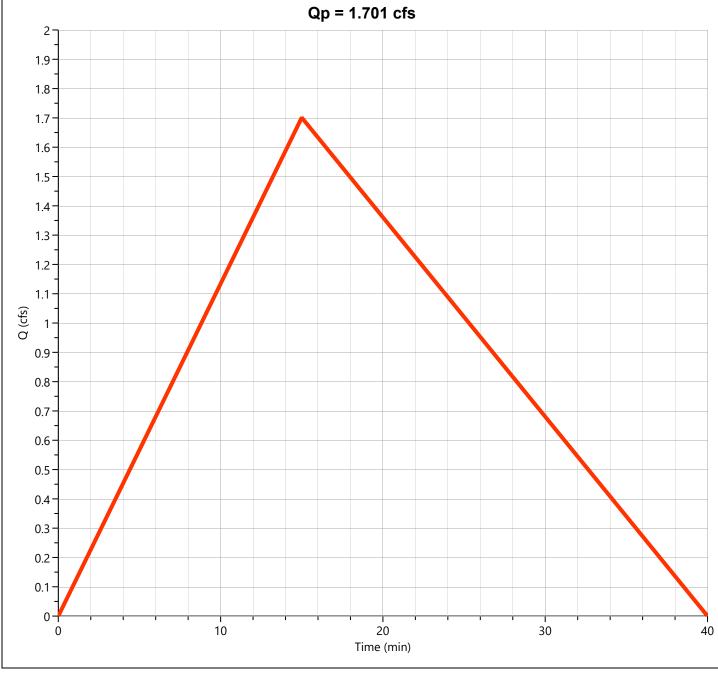


Pre-Dev Basin "B"

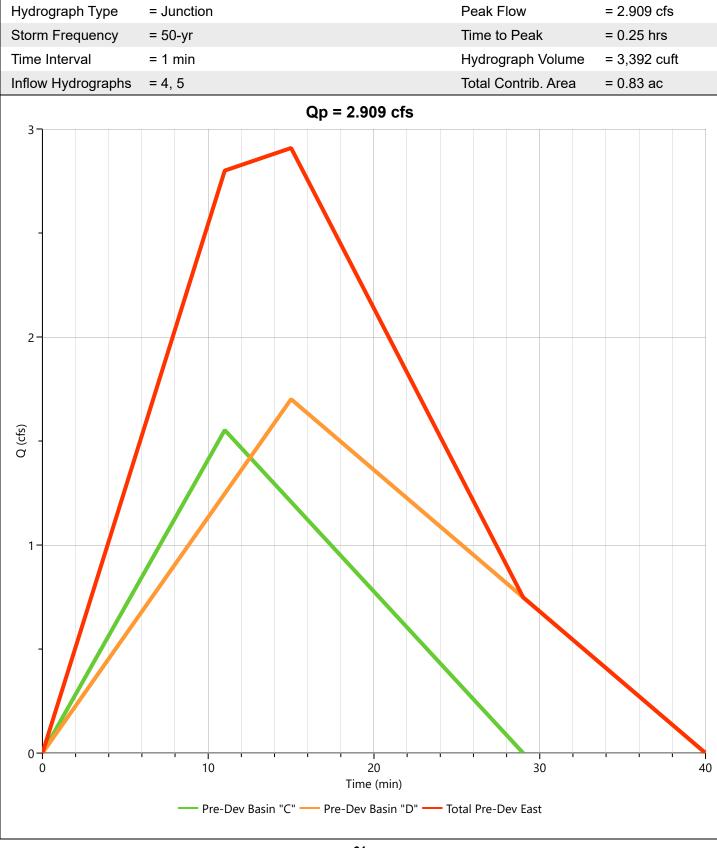
Hydrograph Type	= Rational	Peak Flow	= 12.50 cfs
Storm Frequency	= 50-yr	Time to Peak	= 0.23 hrs
Time Interval	= 1 min	Runoff Volume	= 14,015 cuft
Drainage Area	= 3.26 ac	Runoff Coeff.	= 0.59
Tc Method	= TR55	Time of Conc. (Tc)	= 14.0 min
IDF Curve	= City of Bryant IDF Curve.idf	Intensity	= 6.50 in/hr
Freq. Corr. Factor	= 1.00	Asc/Rec Limb Factors	s = 1/1.67



Total Pre-Dev West

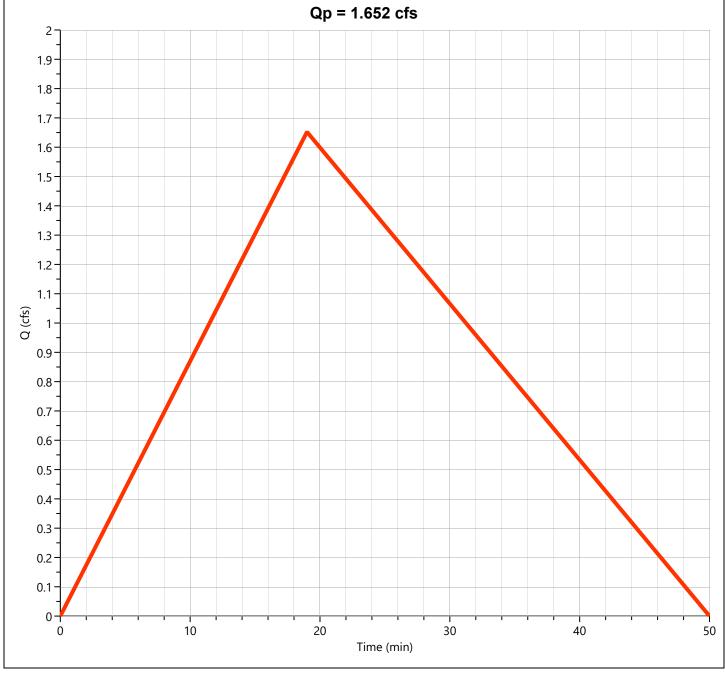

Pre-Dev Basin "C"

Hydrograph Type	= Rational	Peak Flow	= 1.553 cfs
Storm Frequency	= 50-yr	Time to Peak	= 0.18 hrs
Time Interval	= 1 min	Runoff Volume	= 1,368 cuft
Drainage Area	= 0.33 ac	Runoff Coeff.	= 0.65
Tc Method	= TR55	Time of Conc. (Tc)	= 11.0 min
IDF Curve	= City of Bryant IDF Curve.idf	Intensity	= 7.24 in/hr
Freq. Corr. Factor	= 1.00	Asc/Rec Limb Factors = 1/1.67	

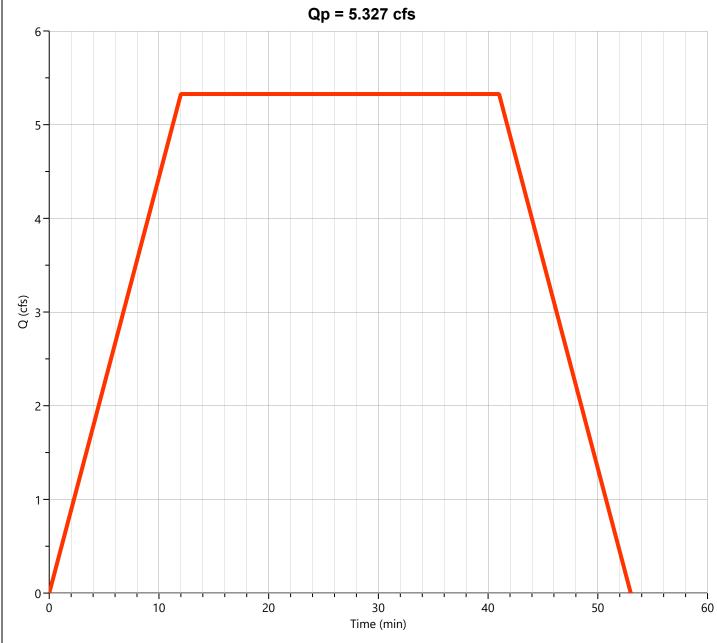


Pre-Dev Basin "D"

Hydrograph Type	= Rational	Peak Flow	= 1.701 cfs
Storm Frequency	= 50-yr	Time to Peak	= 0.25 hrs
Time Interval	= 1 min	Runoff Volume	= 2,044 cuft
Drainage Area	= 0.5 ac	Runoff Coeff.	= 0.54
Tc Method	= TR55	Time of Conc. (Tc)	= 15.0 min
IDF Curve	= City of Bryant IDF Curve.idf	Intensity	= 6.30 in/hr
Freq. Corr. Factor	= 1.00	Asc/Rec Limb Factors = 1/1.67	



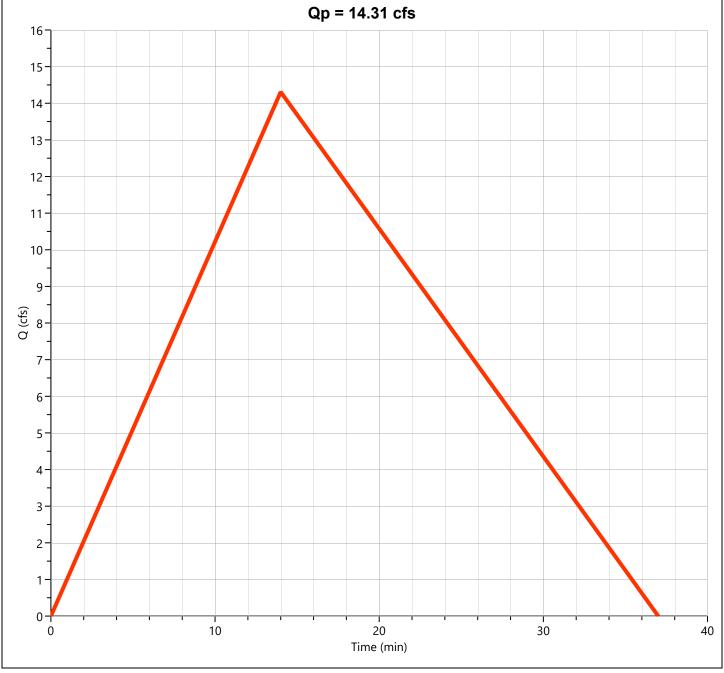
Total Pre-Dev East


Pre-Dev Basin "E"

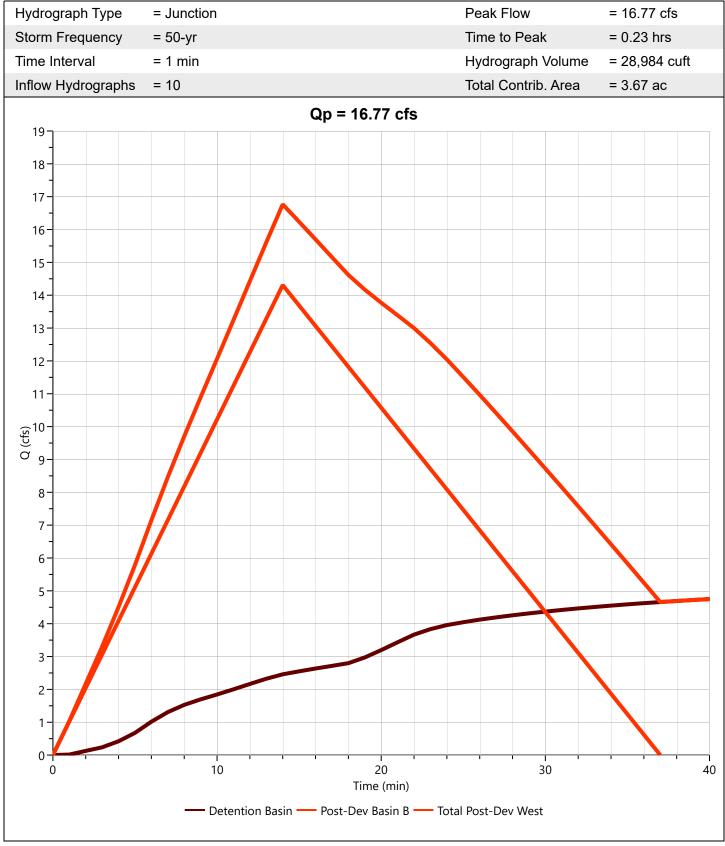
Hydrograph Type	= Rational	Peak Flow	= 1.652 cfs
Storm Frequency	= 50-yr	Time to Peak	= 0.32 hrs
Time Interval	= 1 min	Runoff Volume	= 2,514 cuft
Drainage Area	= 0.53 ac	Runoff Coeff.	= 0.55
Tc Method	= TR55	Time of Conc. (Tc)	= 19.0 min
IDF Curve	= City of Bryant IDF Curve.idf	Intensity	= 5.67 in/hr
Freq. Corr. Factor	= 1.00	Asc/Rec Limb Factors	s = 1/1.67

Post-Dev Basin A

Storm Frequency	= 50-yr	Time to Peak	= 0.20 hrs
Time Interval	= 1 min	Runoff Volume	= 13,104 cuft
Drainage Area	= 1.56 ac	Runoff Coeff.	= 0.85
Tc Method	= User	Time of Conc. (Tc)	= 12.0 min
IDF Curve	= City of Bryant IDF Curve.idf	Intensity	= 4.02 in/hr
Freq. Corr. Factor	= 1.00	Storm Duration	= 3.42 x Tc
Target Q	= 0.000 cfs	Required Storage	= 0.000 cuft
Qp = 5.327 cfs			

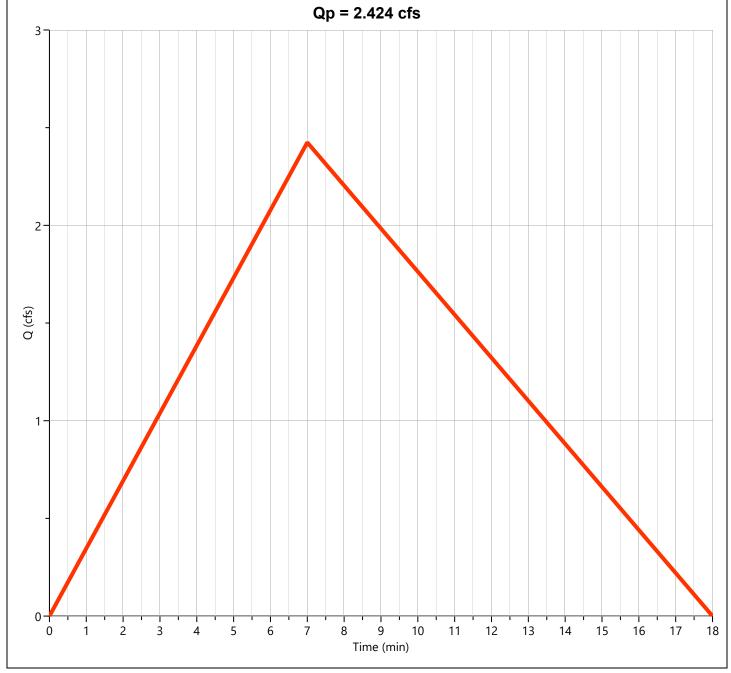


Detention Basin Hyd. No. 9

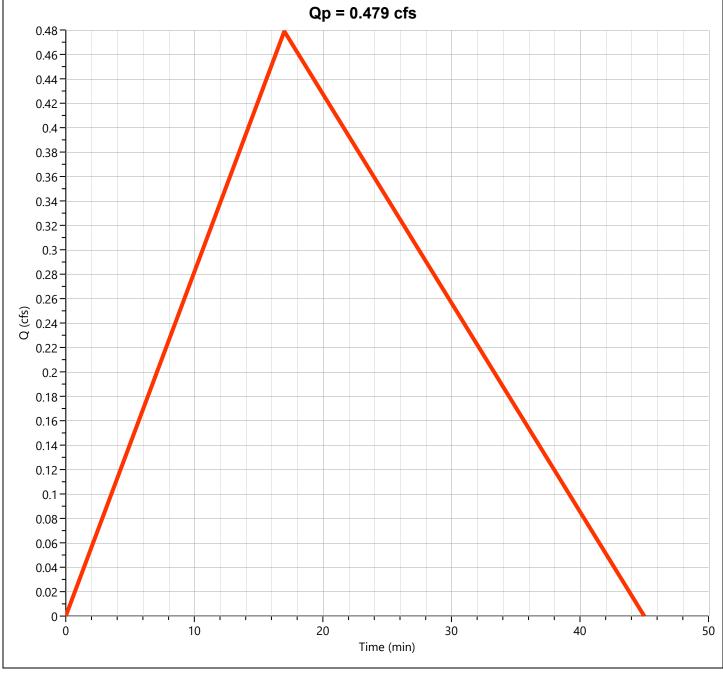

		D 1 5	4.700 (
Hydrograph Type	= Pond Route	Peak Flow	= 4.789 cfs
Storm Frequency	= 50-yr	Time to Peak	= 0.70 hrs
Time Interval	= 1 min	Hydrograph Volume	= 13,102 cuft
Inflow Hydrograph	= 8 - Post-Dev Basin A	Max. Elevation	= 422.54 ft
Pond Name	= Bryant Pharmacy Detention Pond	Max. Storage	= 3,812 cuft
Pond Routing by Storage Ind	dication Method	Center of ma	ss detention time = 12 min
_	Qp = 4.789 cfs		
6			
0 10	20 30 40 50	60 70 80	90 100
	Time (min) —— Req'd Stor —— Post-Dev Basin A —— [Octontion Booin	
	— Req u Stoi — Post-Dev basin A — t	Deterition Dasin	

Post-Dev Basin B Hyd. No. 10

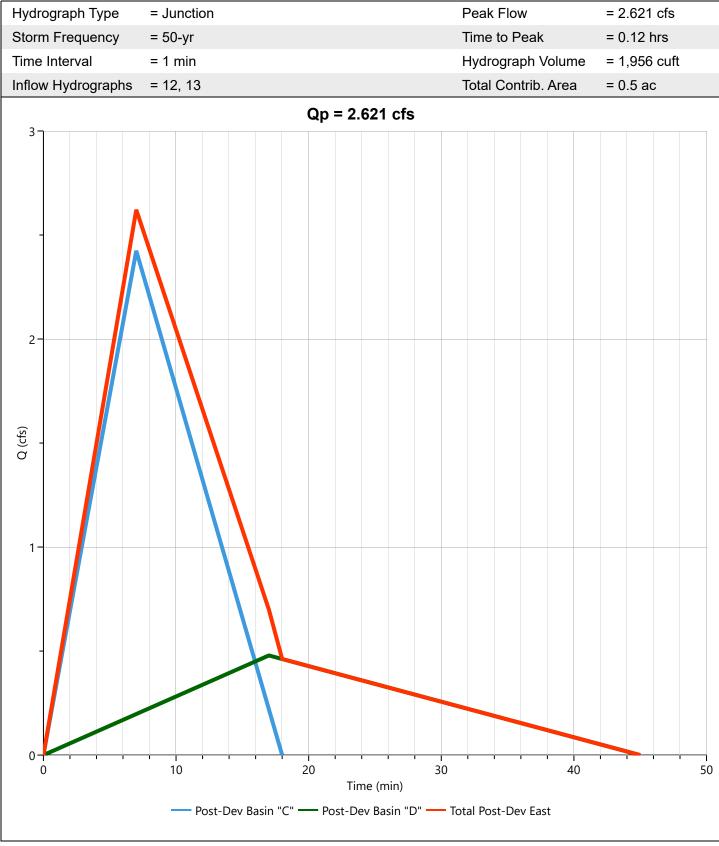
Hydrograph Type	= Rational	Peak Flow	= 14.31 cfs
Storm Frequency	= 50-yr	Time to Peak	= 0.23 hrs
Time Interval	= 1 min	Runoff Volume	= 16,045 cuft
Drainage Area	= 3.67 ac	Runoff Coeff.	= 0.60
Tc Method	= TR55	Time of Conc. (Tc)	= 14.0 min
IDF Curve	= City of Bryant IDF Curve.idf	Intensity	= 6.50 in/hr
Freq. Corr. Factor	= 1.00	Asc/Rec Limb Factors	s = 1/1.67



Total Post-Dev West

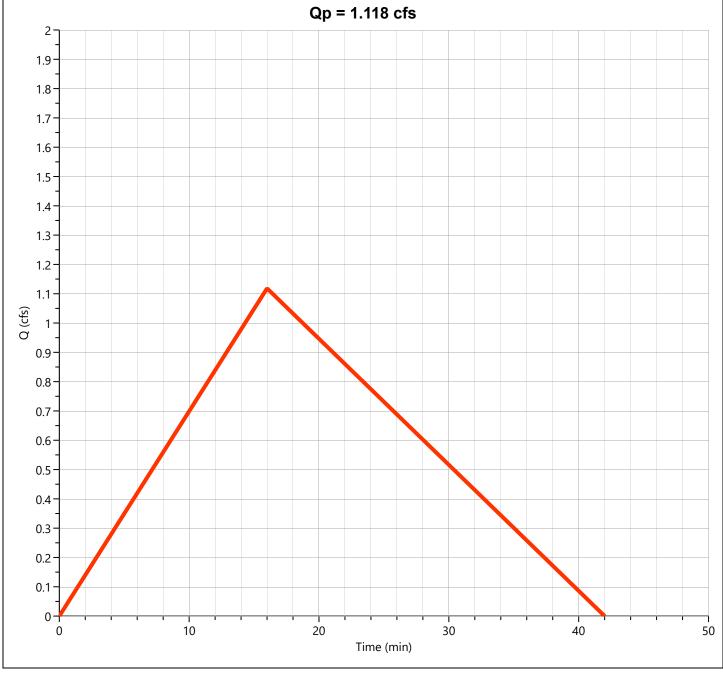

Post-Dev Basin "C"

Hydrograph Type	= Rational	Peak Flow	= 2.424 cfs
Storm Frequency	= 50-yr	Time to Peak	= 0.12 hrs
Time Interval	= 1 min	Runoff Volume	= 1,359 cuft
Drainage Area	= 0.38 ac	Runoff Coeff.	= 0.72
Tc Method	= TR55	Time of Conc. (Tc)	= 7.0 min
IDF Curve	= City of Bryant IDF Curve.idf	Intensity	= 8.86 in/hr
Freq. Corr. Factor	= 1.00	Asc/Rec Limb Factors	s = 1/1.67



Post-Dev Basin "D"

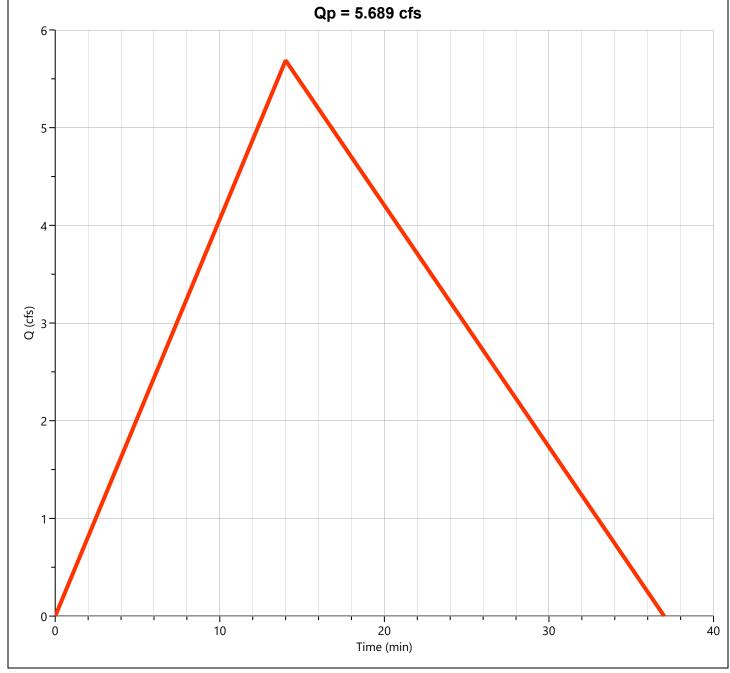
Hydrograph Type	= Rational	Peak Flow	= 0.479 cfs
Storm Frequency	= 50-yr	Time to Peak	= 0.28 hrs
Time Interval	= 1 min	Runoff Volume	= 652 cuft
Drainage Area	= 0.12 ac	Runoff Coeff.	= 0.67
Tc Method	= TR55	Time of Conc. (Tc)	= 17.0 min
IDF Curve	= City of Bryant IDF Curve.idf	Intensity	= 5.96 in/hr
Freq. Corr. Factor	= 1.00	Asc/Rec Limb Factor	rs = 1/1.67



Total Post-Dev East

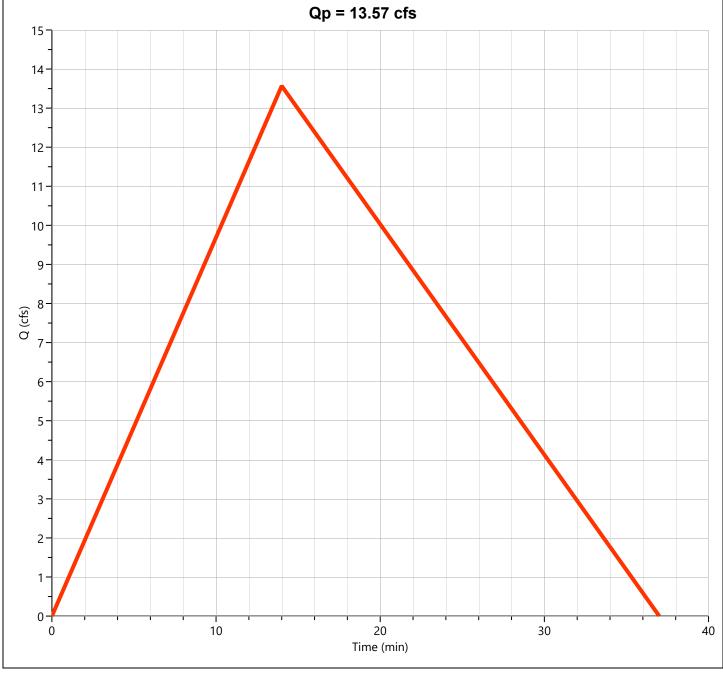
Post-Dev Basin "E"

Hydrograph Type	= Rational	Peak Flow	= 1.118 cfs
Storm Frequency	= 50-yr	Time to Peak	= 0.27 hrs
Time Interval	= 1 min	Runoff Volume	= 1,433 cuft
Drainage Area	= 0.29 ac	Runoff Coeff.	= 0.63
Tc Method	= TR55	Time of Conc. (Tc)	= 16.0 min
IDF Curve	= City of Bryant IDF Curve.idf	Intensity	= 6.12 in/hr
Freq. Corr. Factor	= 1.00	Asc/Rec Limb Factors	s = 1/1.67

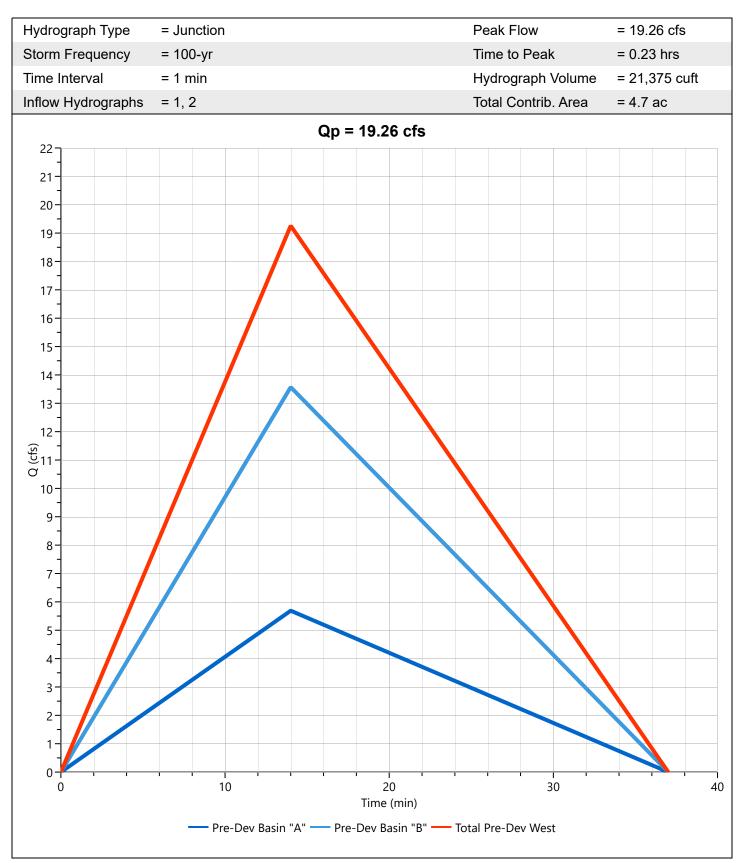

Hydrograph 100-yr Summary

Project Name: Bryant Pharmacy File: Detention Calculation 11-13-25 FINAL.hys

Hydrology Studio v 3.0.0.39 11-13-2025 Maximum Peak Time to Hydrograph Inflow Maximum Hyd. Hydrograph Hydrograph Flow Peak Volume Hyd(s) Elevation Storage No. Name Type (cuft) (cfs) (hrs) (cuft) (ft) Pre-Dev Basin "A" 5.689 0.23 6,379 1 Rational 2 Rational Pre-Dev Basin "B" 13.57 0.23 15,215 3 Junction Total Pre-Dev West 19.26 0.23 21,375 1, 2 Pre-Dev Basin "C" 1.686 0.18 1,486 4 Rational 5 Pre-Dev Basin "D" 1.847 0.25 Rational 2,219 0.25 Junction Total Pre-Dev East 3.158 3,683 6 4, 5 7 Rational Pre-Dev Basin "E" 1.793 0.32 2,729 Mod Rational 8 Post-Dev Basin A 5.774 0.20 14,204 5.104 0.70 14,202 9 Pond Route **Detention Basin** 422.78 4,240 8 0.23 10 Rational Post-Dev Basin B 15.53 17,419 Junction Total Post-Dev West 18.08 0.23 31,444 11 9, 10 12 Rational Post-Dev Basin "C" 2.635 0.12 1,477 13 Rational Post-Dev Basin "D" 0.520 0.28 708 14 Junction Total Post-Dev East 2.849 0.12 2,124 12, 13 Post-Dev Basin "E" 1.214 0.27 1,556 15 Rational

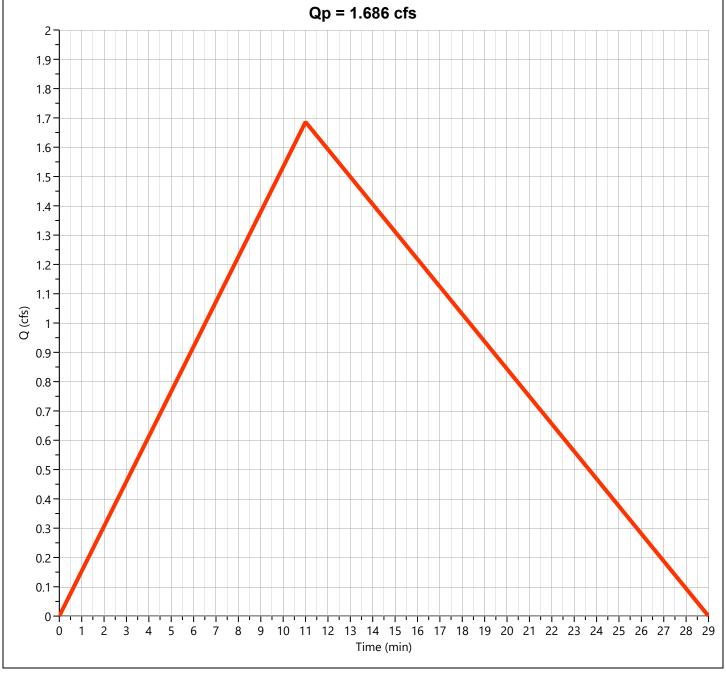

Pre-Dev Basin "A"

Hydrograph Type	= Rational	Peak Flow	= 5.689 cfs
Storm Frequency	= 100-yr	Time to Peak	= 0.23 hrs
Time Interval	= 1 min	Runoff Volume	= 6,379 cuft
Drainage Area	= 1.44 ac	Runoff Coeff.	= 0.56
Tc Method	= TR55	Time of Conc. (Tc)	= 14.0 min
IDF Curve	= City of Bryant IDF Curve.idf	Intensity	= 7.05 in/hr
Freq. Corr. Factor	= 1.00	Asc/Rec Limb Factors	s = 1/1.67

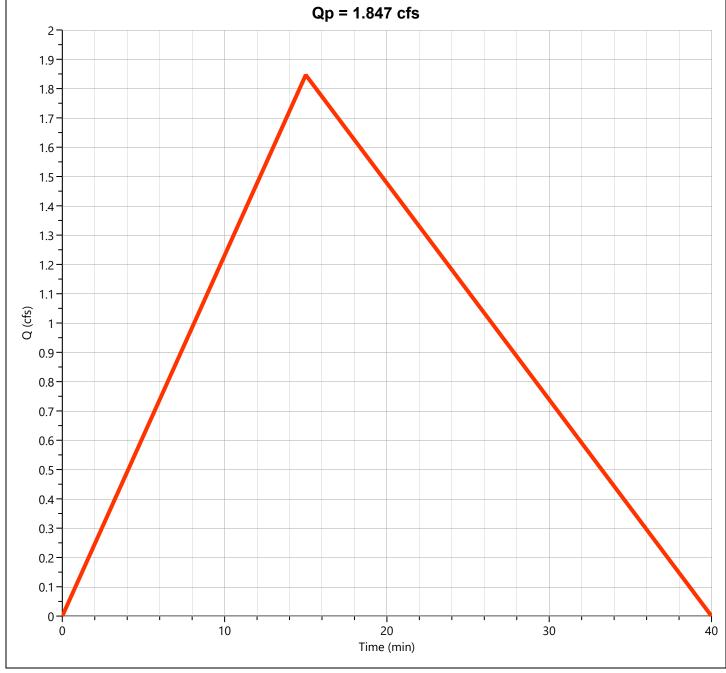


Pre-Dev Basin "B"

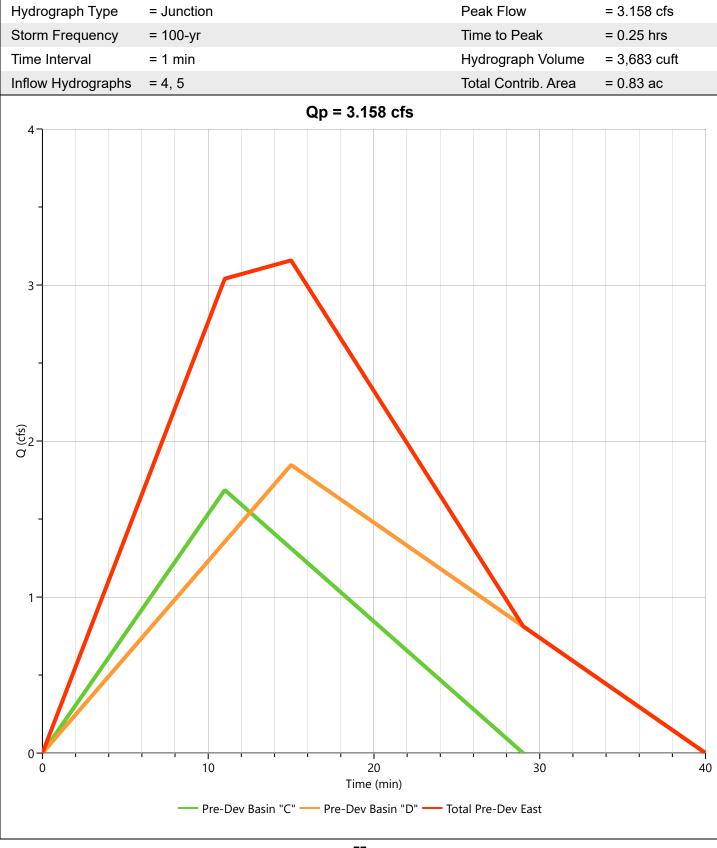
Hydrograph Type	= Rational	Peak Flow	= 13.57 cfs
Storm Frequency	= 100-yr	Time to Peak	= 0.23 hrs
Time Interval	= 1 min	Runoff Volume	= 15,215 cuft
Drainage Area	= 3.26 ac	Runoff Coeff.	= 0.59
Tc Method	= TR55	Time of Conc. (Tc)	= 14.0 min
IDF Curve	= City of Bryant IDF Curve.idf	Intensity	= 7.05 in/hr
Freq. Corr. Factor	= 1.00	Asc/Rec Limb Factor	rs = 1/1.67



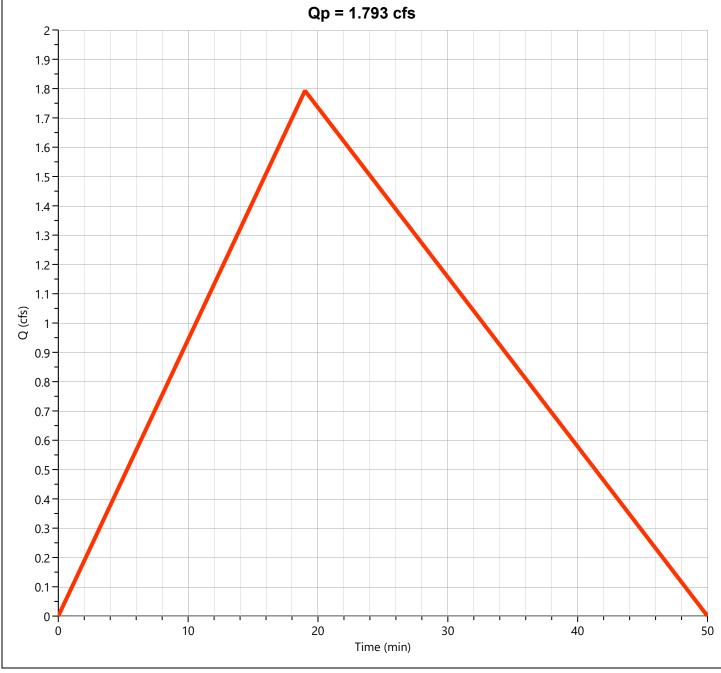
Total Pre-Dev West


Pre-Dev Basin "C"

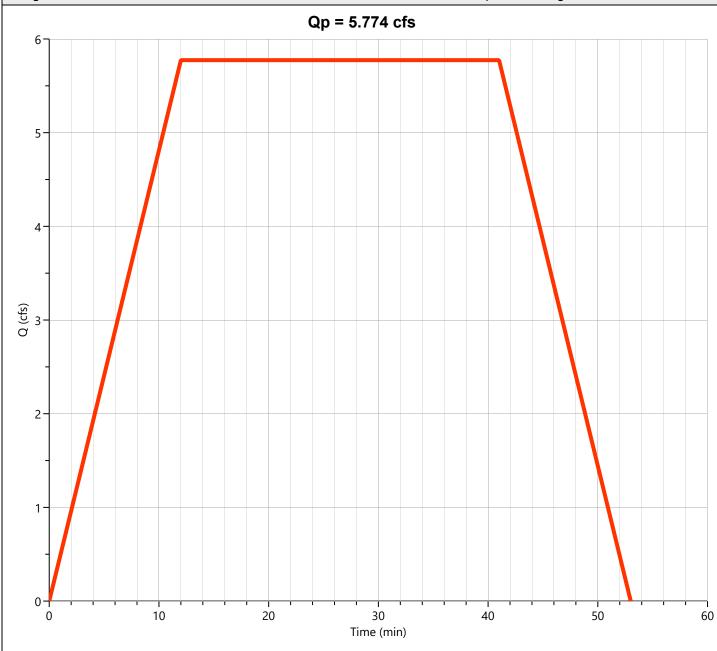
Hydrograph Type	= Rational	Peak Flow	= 1.686 cfs
Storm Frequency	= 100-yr	Time to Peak	= 0.18 hrs
Time Interval	= 1 min	Runoff Volume	= 1,486 cuft
Drainage Area	= 0.33 ac	Runoff Coeff.	= 0.65
Tc Method	= TR55	Time of Conc. (Tc)	= 11.0 min
IDF Curve	= City of Bryant IDF Curve.idf	Intensity	= 7.86 in/hr
Freq. Corr. Factor	= 1.00	Asc/Rec Limb Factors	s = 1/1.67


Pre-Dev Basin "D"

Hydrograph Type	= Rational	Peak Flow	= 1.847 cfs
Storm Frequency	= 100-yr	Time to Peak	= 0.25 hrs
Time Interval	= 1 min	Runoff Volume	= 2,219 cuft
Drainage Area	= 0.5 ac	Runoff Coeff.	= 0.54
Tc Method	= TR55	Time of Conc. (Tc)	= 15.0 min
IDF Curve	= City of Bryant IDF Curve.idf	Intensity	= 6.84 in/hr
Freq. Corr. Factor	= 1.00	Asc/Rec Limb Factor	s = 1/1.67


.....

Total Pre-Dev East


Pre-Dev Basin "E"

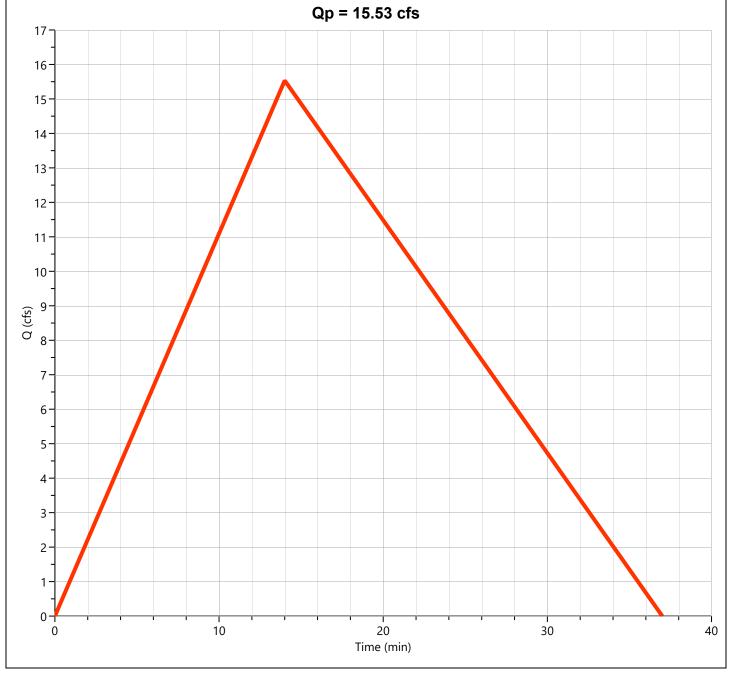
Hydrograph Type	= Rational	Peak Flow	= 1.793 cfs
Storm Frequency	= 100-yr	Time to Peak	= 0.32 hrs
Time Interval	= 1 min	Runoff Volume	= 2,729 cuft
Drainage Area	= 0.53 ac	Runoff Coeff.	= 0.55
Tc Method	= TR55	Time of Conc. (Tc)	= 19.0 min
IDF Curve	= City of Bryant IDF Curve.idf	Intensity	= 6.15 in/hr
Freq. Corr. Factor	= 1.00	Asc/Rec Limb Factor	s = 1/1.67

Post-Dev Basin A

Target Q	= 0.000 cfs	Required Storage	= 0.000 cuft
Freq. Corr. Factor	= 1.00	Storm Duration	= 3.42 x Tc
IDF Curve	= City of Bryant IDF Curve.idf	Intensity	= 4.35 in/hr
Tc Method	= User	Time of Conc. (Tc)	= 12.0 min
Drainage Area	= 1.56 ac	Runoff Coeff.	= 0.85
Time Interval	= 1 min	Runoff Volume	= 14,204 cuft
Storm Frequency	= 100-yr	Time to Peak	= 0.20 hrs
Hydrograph Type	= Mod Rational	Peak Flow	= 5.774 cfs

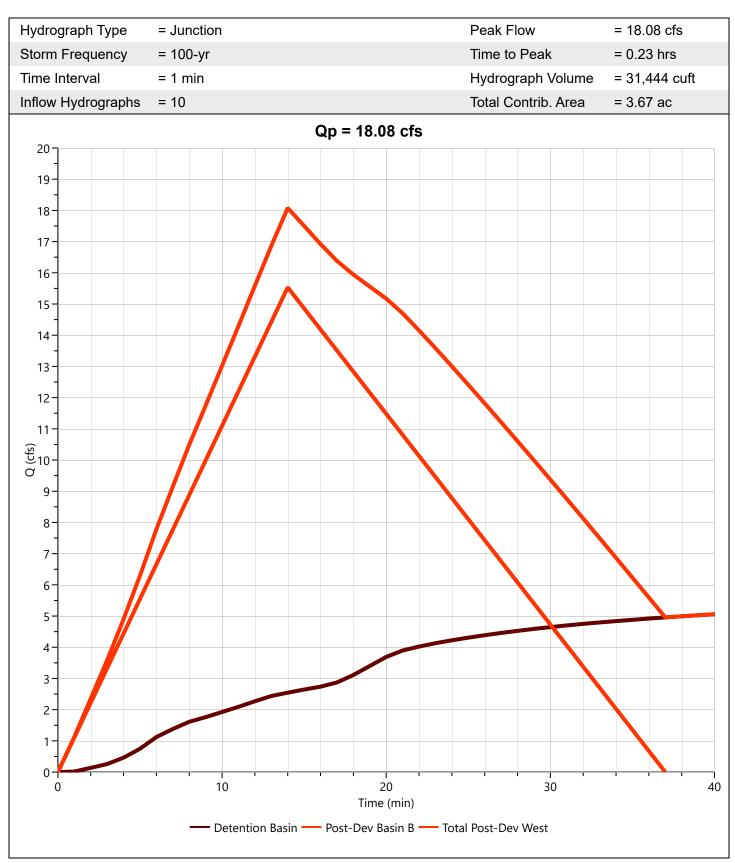
Detention Basin

Hyd. No. 9


Hydrograph Type	= Pond Route	Peak Flow	= 5.104 cfs
Storm Frequency	= 100-yr	Time to Peak	= 0.70 hrs
Time Interval	= 1 min	Hydrograph Volume	= 14,202 cuft
nflow Hydrograph	= 8 - Post-Dev Basin A	Max. Elevation	= 422.78 ft
Pond Name	= Bryant Pharmacy Detention Pond	Max. Storage	= 4,240 cuft
Pond Routing by Storage In	dication Method	Center of mas	ss detention time = 12 mi
	Qp = 5.104 cfs		
6			
2-			
·			

Time (min)

Req'd Stor — Post-Dev Basin A — Detention Basin

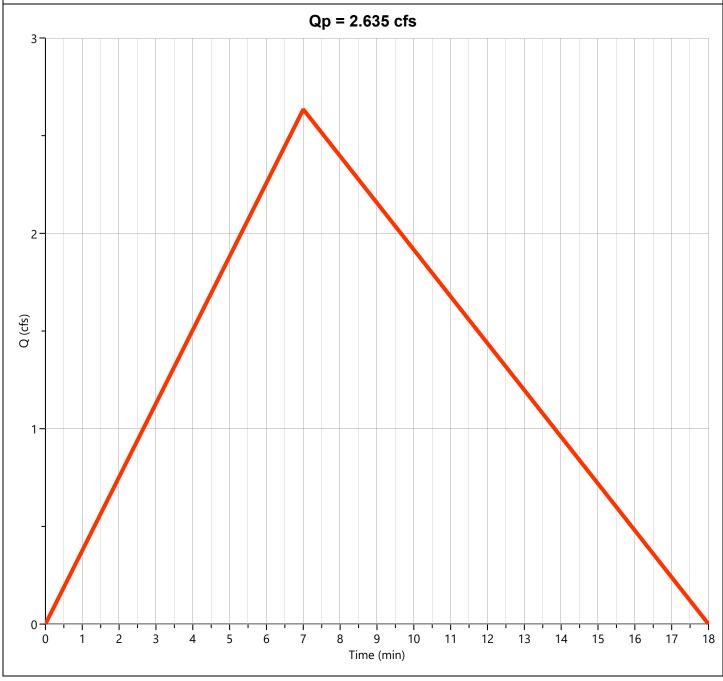

Post-Dev Basin B

Hydrograph Type	= Rational	Peak Flow	= 15.53 cfs
Storm Frequency	= 100-yr	Time to Peak	= 0.23 hrs
Time Interval	= 1 min	Runoff Volume	= 17,419 cuft
Drainage Area	= 3.67 ac	Runoff Coeff.	= 0.60
Tc Method	= TR55	Time of Conc. (Tc)	= 14.0 min
IDF Curve	= City of Bryant IDF Curve.idf	Intensity	= 7.05 in/hr
Freq. Corr. Factor	= 1.00	Asc/Rec Limb Factor	s = 1/1.67

11 13 202

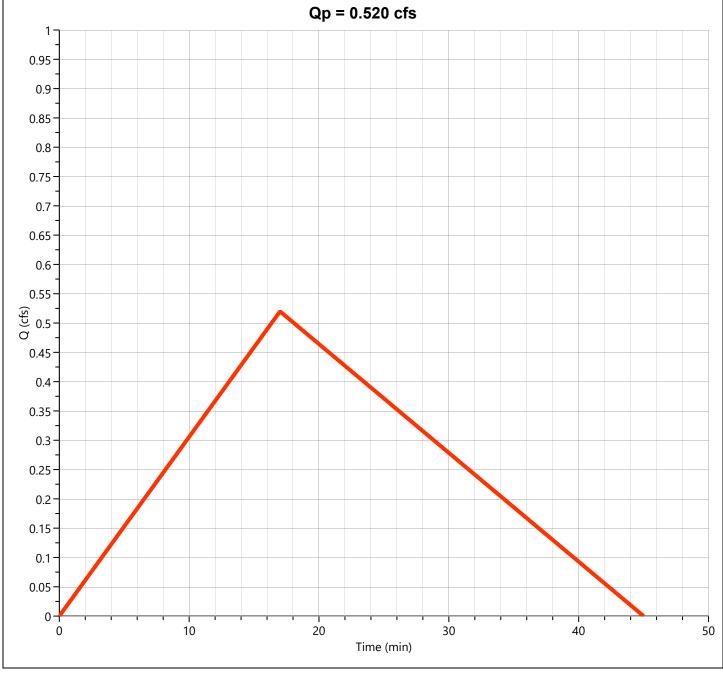
Total Post-Dev West

Hyd. No. 12

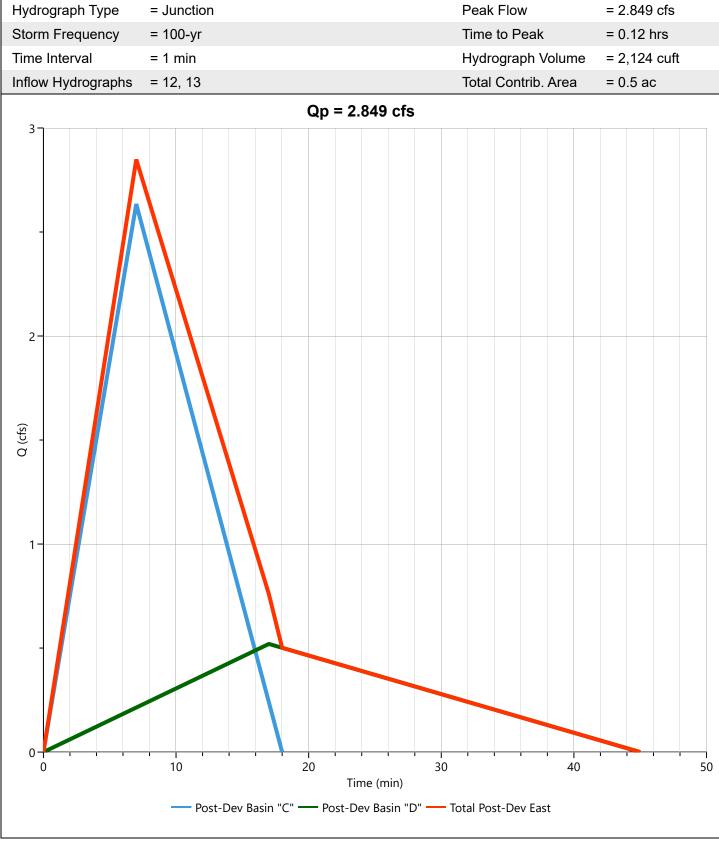

Post-Dev Basin "C"

Hydrograph Type	= Rational	Peak Flow	= 2.635 cfs
Storm Frequency	= 100-yr	Time to Peak	= 0.12 hrs
Time Interval	= 1 min	Runoff Volume	= 1,477 cuft
Drainage Area	= 0.38 ac	Runoff Coeff.	= 0.72
Tc Method	= TR55	Time of Conc. (Tc)	= 7 0 min

Tc Method = TR55 Time of Conc. (Tc) = 7.0 min

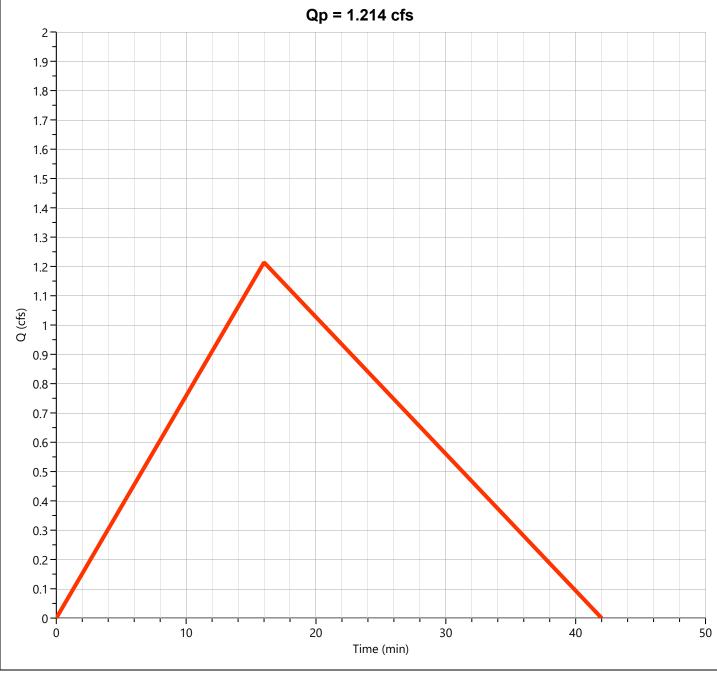

IDF Curve = City of Bryant IDF Curve.idf Intensity = 9.63 in/hr

Freq. Corr. Factor = 1.00 Asc/Rec Limb Factors = 1/1.67



Post-Dev Basin "D"

Hydrograph Type	= Rational	Peak Flow	= 0.520 cfs
Storm Frequency	= 100-yr	Time to Peak	= 0.28 hrs
Time Interval	= 1 min	Runoff Volume	= 708 cuft
Drainage Area	= 0.12 ac	Runoff Coeff.	= 0.67
Tc Method	= TR55	Time of Conc. (Tc)	= 17.0 min
IDF Curve	= City of Bryant IDF Curve.idf	Intensity	= 6.47 in/hr
Freq. Corr. Factor	= 1.00	Asc/Rec Limb Factors = 1/1.67	



Total Post-Dev East

Post-Dev Basin "E"

Hydrograph Type	= Rational	Peak Flow	= 1.214 cfs
Storm Frequency	= 100-yr	Time to Peak	= 0.27 hrs
Time Interval	= 1 min	Runoff Volume	= 1,556 cuft
Drainage Area	= 0.29 ac	Runoff Coeff.	= 0.63
Tc Method	= TR55	Time of Conc. (Tc)	= 16.0 min
IDF Curve	= City of Bryant IDF Curve.idf	Intensity	= 6.64 in/hr
Freq. Corr. Factor	= 1.00	Asc/Rec Limb Factors = 1/1.67	

