Drainage Report

For

Jamey South Parking Lot

Bryant, Saline County, Arkansas

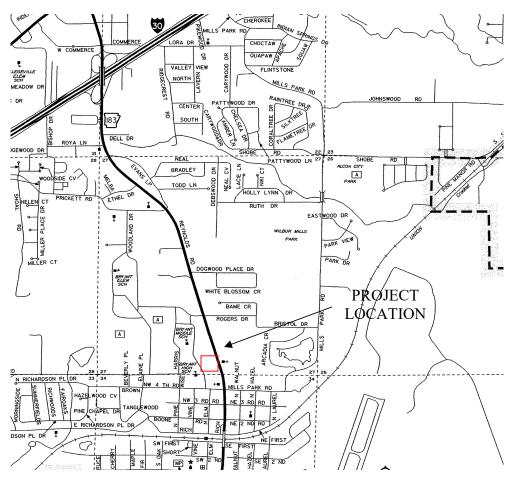
August 5, 2025

Prepared by:

RICHARDSON ENGINEERING, PLLC

325 W. South St. Benton, AR 72015 501-315-7225

TABLE OF CONTENTS


Title	Page Number
Project Owner Information	3
Project Location and Description	3
Site Drainage	4
Runoff Summary	4
Recommendations/Summary	5
Appendices:	6
Runoff Coefficient Calculation	7
Site Drainage Basin Maps	8
Pre and Post Development Hydrographs (Hydrology	9
Studio)	

Project Owner Information

Jamey South 515 N Reynolds Road Bryant, AR 72022

Project Location and Description

The project is located on West side of N Reynolds Road, part of the Southwest Quater of the Southeast Quarter, Section 27, Township 1-S, Range 14-W, Saline County, Arkansas.

Vicinity Map – N.T.S

This project is a proposed Commercial Development for a parking lot, located in the City of Bryant, Saline County.

Site Drainage

Pre-Development

The pre-developed runoff for the site flows to the west. The pre-development runoff condition consists of a mix of a small commercial development as well as a portion of undeveloped wooded property.

Post-Development

The site drainage starts on the East side of the project and flows to the West. The drainage is sheet flows across the proposed driving surface and is discharged into a proposed detention basin on the West side of the project. The proposed detention basin will utilize a riser/orifice/culvert discharge structure. Post-Development Basin A is the drainage basin that discharges water into the proposed detention basin and Post-Development Basin B are the grass tie back slopes from the proposed pavement to existing grade. This area is not routed through the detention basin, so it was calculated by itself. The post-development runoff conditions changed from developed/undeveloped to commercial development.

Runoff Summary

Basin Design Point

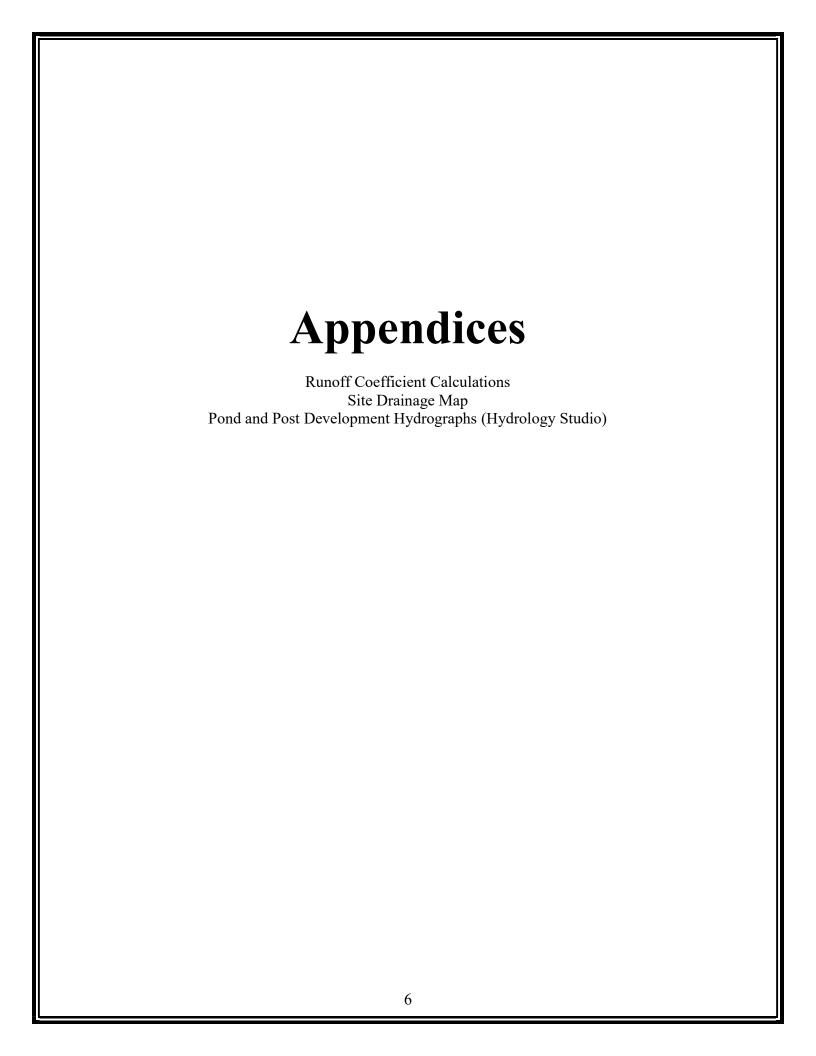
Development Drainage Study Area = 0.56 Ac Existing Condition runoff Coefficient: C = 0.61

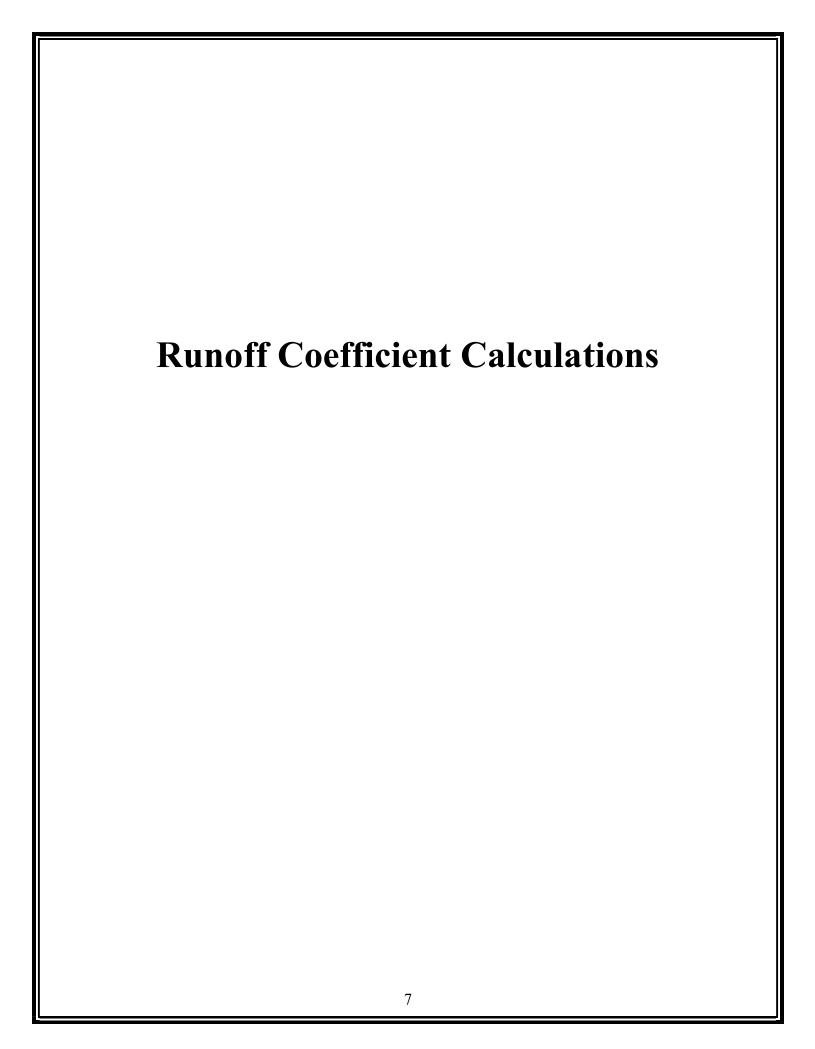
Proposed runoff Coefficient: C = 0.95

Tc Undeveloped = 9 Minutes (TR55 Method)

Tc Developed = 5 Minutes

Detention Basin Required Volume: 1,685 CF

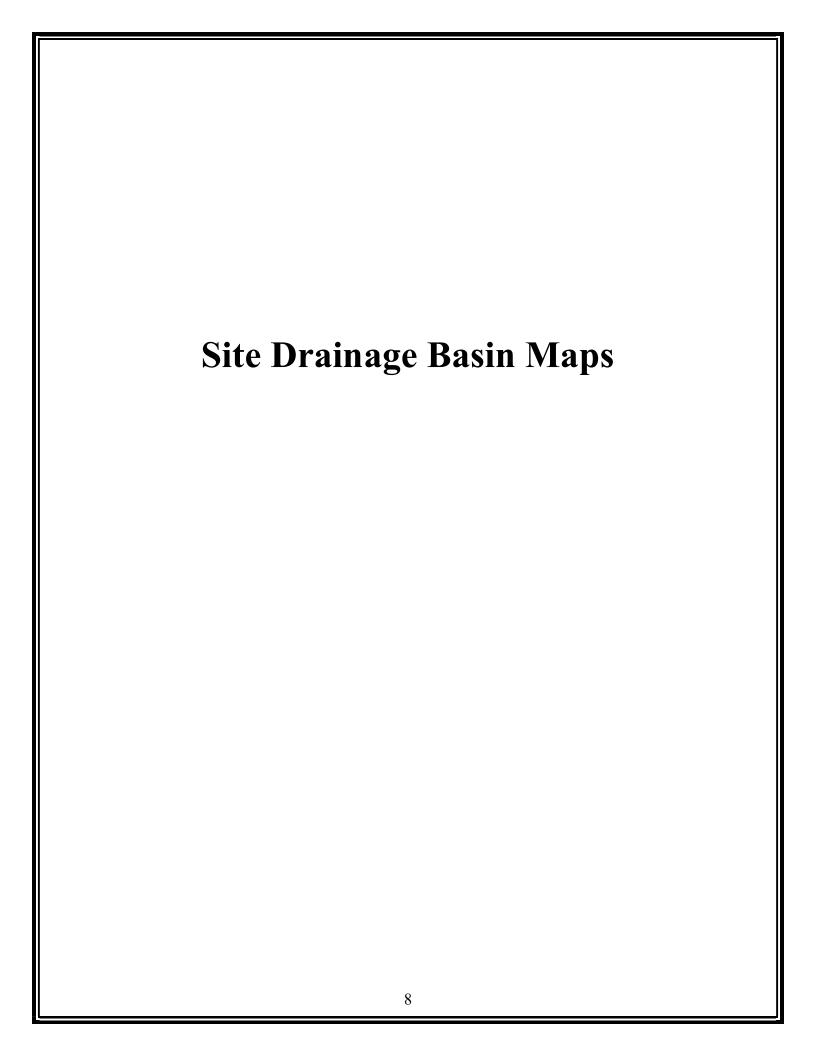

Detention Basin Volume: 2,265 CF

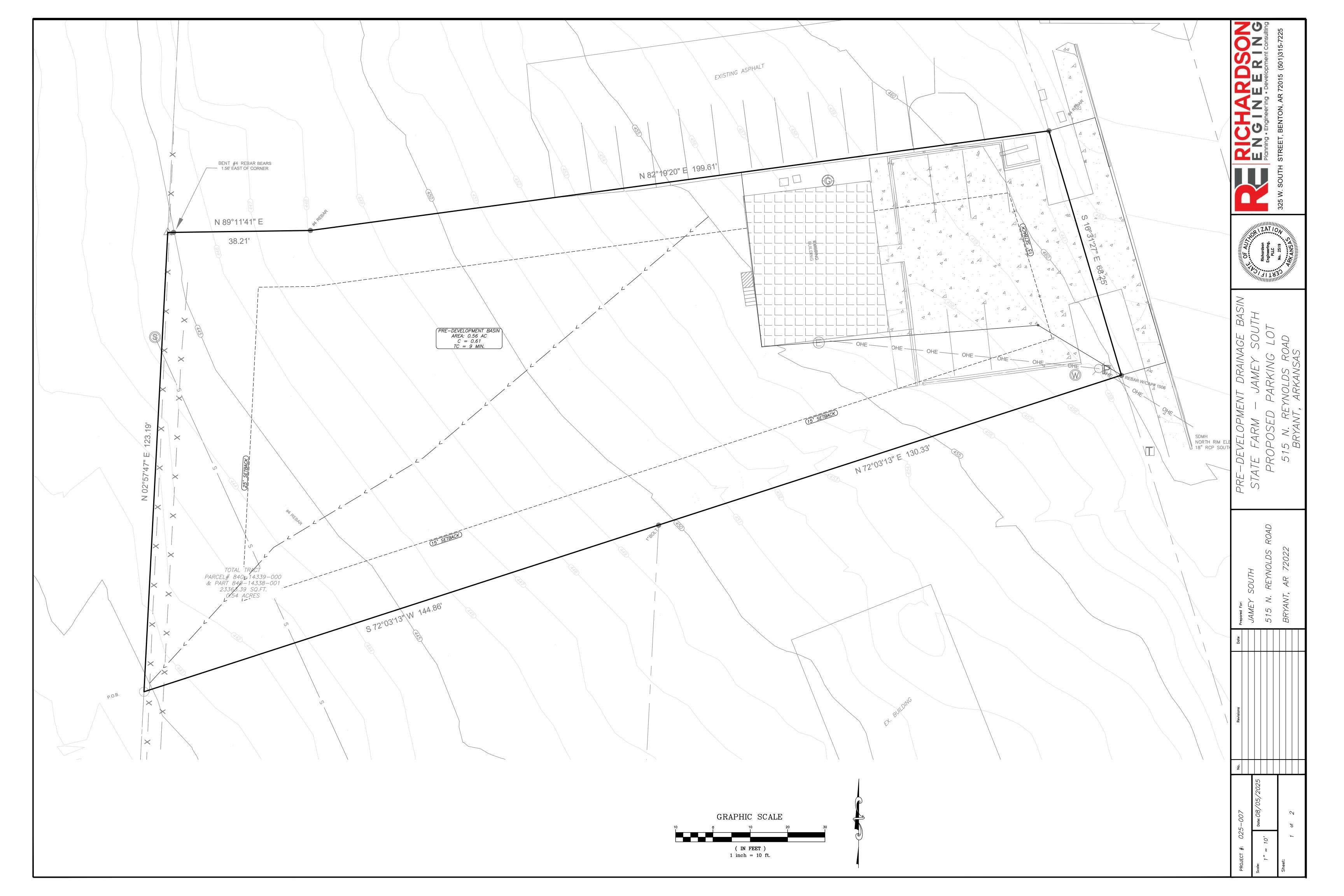

Maximum Storage: 963 CF

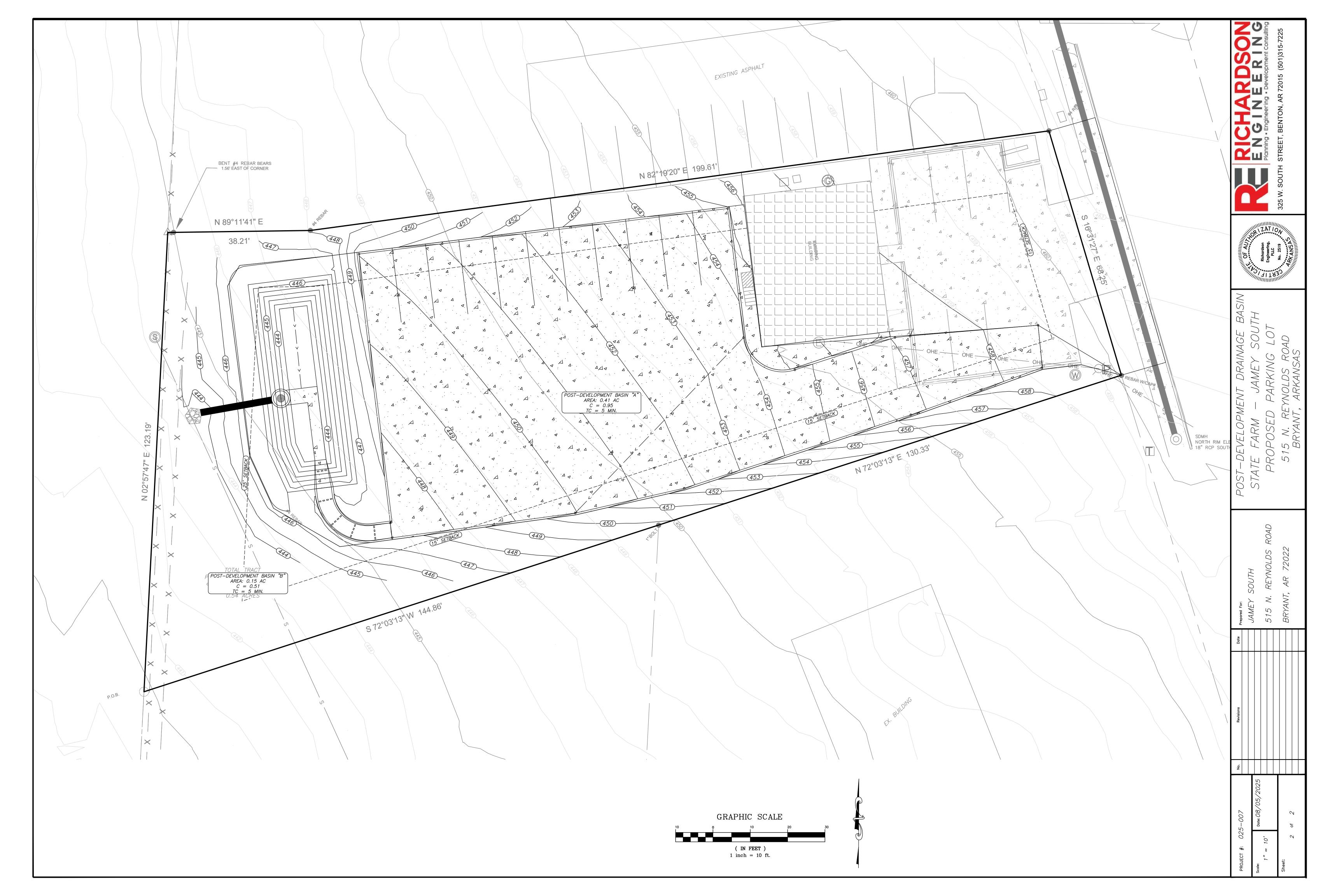
Discharge Structure: Riser/Culvert/Orifice

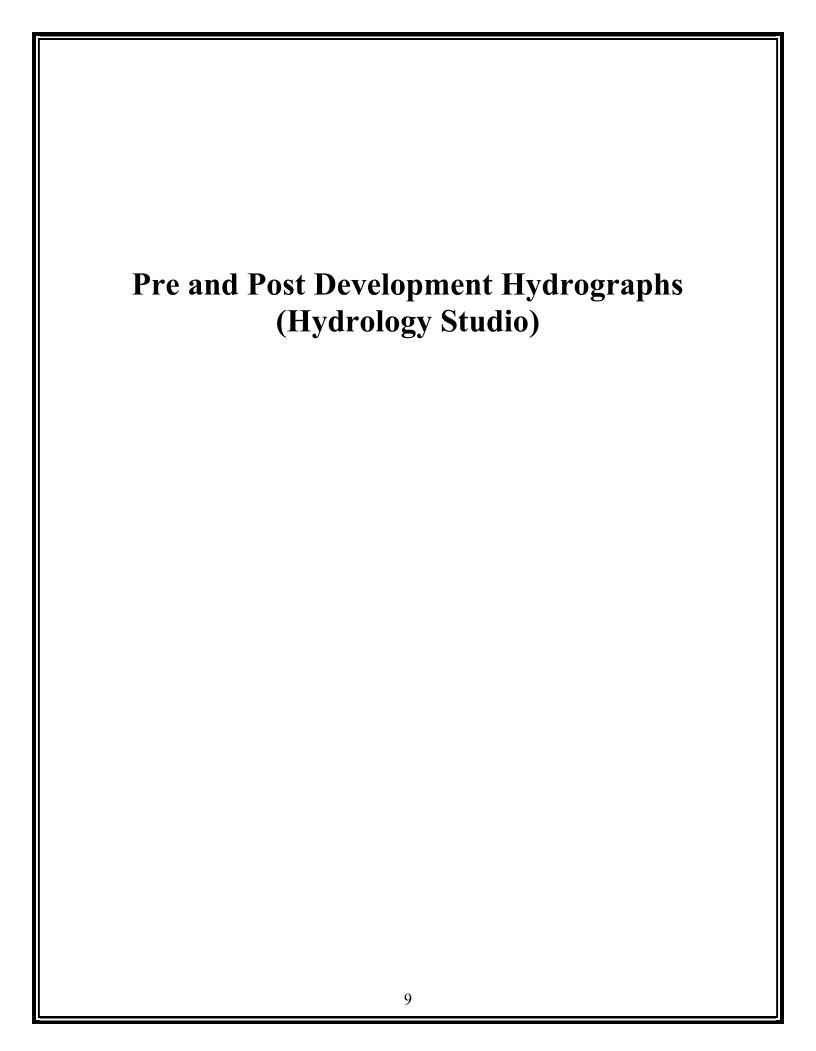
Design Storm	Pre-Development Flow Rate (cfs)	Post-Development Flow Rate (cfs)	Post-Development w/ Detention Flow Rate (cfs)
2-yr	1.61	2.86	1.38
10-yr	2.15	3.83	1.72
25-yr	2.47	4.39	1.88
50-yr	2.71	4.80	1.95
100-yr	2.94	5.22	2.10

Recommendations/Summary
The proposed drainage improvements include a small detention basin on the West side of the project. The proposed detention basin releases the post development runoff at a lower rate than the pre-development condition.

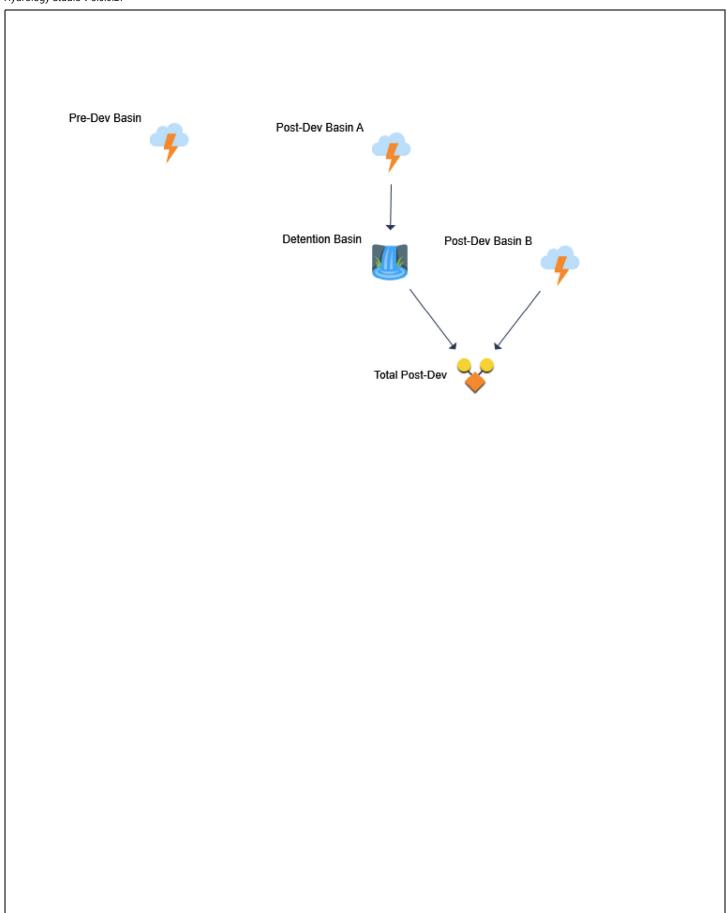





325 West South Street Benton, AR 72015 (501) 315-7225


(1/1)

PROJECT 025-007 DRAINAGE CALCULATIONS DATE 05/02/2025 EXISTING (: DEVELOPEN: 0.16 C= 0.95 C= 0.47 UNDEVELOPED: 0.40 (AVERAGE 2-7%.
FOREST /WOODLANDS) C= (0.16)(0.95) + (0.40)(0.47) = 0.61 0.56 POST - DEU C = 0.95


Table of Contents

Hydrology Studio v 3.0.0.27 08-05-2025

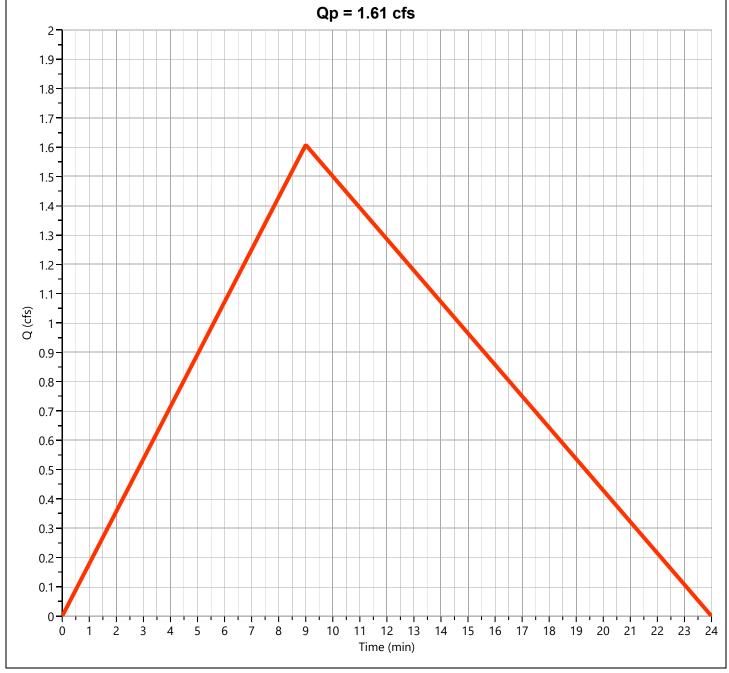
Basi	n Model Schematic	. 1
Hydr	rograph by Return Period	. 2
2 - Y	ear	
	Hydrograph Summary	. 3
	Hydrograph Reports	
	Hydrograph No. 1, Rational, Pre-Dev Basin	. 4
	Hydrograph No. 2, Mod Rational, Post-Dev Basin A	. 5
	Hydrograph No. 3, Pond Route, Detention Basin	. 6
	Detention Pond Reports - Jamey South Detention Pond	. 7
	Hydrograph No. 4, Rational, Post-Dev Basin B	11
	Hydrograph No. 5, Junction, Total Post-Dev	12
10 - `	Year	
	Hydrograph Summary	13
	Hydrograph Reports	
	Hydrograph No. 1, Rational, Pre-Dev Basin	14
	Hydrograph No. 2, Mod Rational, Post-Dev Basin A	15
	Hydrograph No. 3, Pond Route, Detention Basin	16
	Hydrograph No. 4, Rational, Post-Dev Basin B	17
	Hydrograph No. 5, Junction, Total Post-Dev	18
25 - `	Year	
	Hydrograph Summary	19
	Hydrograph Reports	
	Hydrograph No. 1, Rational, Pre-Dev Basin	20
	Hydrograph No. 2, Mod Rational, Post-Dev Basin A	21
	Hydrograph No. 3, Pond Route, Detention Basin	22
	Hydrograph No. 4, Rational, Post-Dev Basin B	23
	Hydrograph No. 5, Junction, Total Post-Dev	24
50 - `	Year	
	Hydrograph Summary	25
	Hydrograph Reports	
	Hydrograph No. 1, Rational, Pre-Dev Basin	26
	Hydrograph No. 2, Mod Rational, Post-Dev Basin A	27
	Hydrograph No. 3, Pond Route, Detention Basin	28
	Hydrograph No. 4, Rational, Post-Dev Basin B	29
	Hydrograph No. 5, Junction, Total Post-Dev	30

Contents continued...

Hydrog	raph Summary	31
Hydrog	raph Reports	
	Hydrograph No. 1, Rational, Pre-Dev Basin	32
	Hydrograph No. 2, Mod Rational, Post-Dev Basin A	33
	Hydrograph No. 3, Pond Route, Detention Basin	34
	Hydrograph No. 4, Rational, Post-Dev Basin B	35
	Hydrograph No. 5, Junction, Total Post-Dev	36

Hydrograph by Return Period

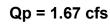
Hydrology Studio v 3.0.0.27

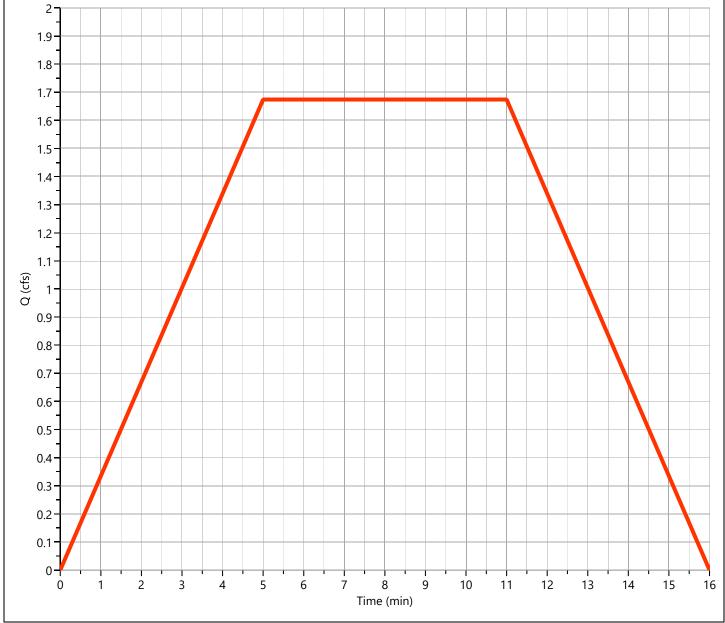

08-05-2025 Peak Outflow (cfs) Hyd. Hydrograph Hydrograph No. Type Name 1-yr 2-yr 3-yr 5-yr 10-yr 25-yr 50-yr 100-yr Rational Pre-Dev Basin 1.608 2.154 2.474 2.705 2.938 1 2 Mod Rational Post-Dev Basin A 1.674 2.244 2.578 2.819 3.062 Pond Route 3 **Detention Basin** 1.291 1.544 1.678 1.776 1.872 0.470 0.857 Post-Dev Basin B 0.628 0.721 0.788 4 Rational 5 Total Post-Dev 1.384 2.098 Junction 1.723 1.881 1.995

Hydrograph 2-yr Summary

08-05-2025 Hydrology Studio v 3.0.0.27 Hydrograph Volume Peak Time to Inflow Maximum Maximum Hyd. Hydrograph Hydrograph Flow Peak Hyd(s) Elevation Storage No. Type Name (cfs) (hrs) (cuft) (cuft) (ft) Rational Pre-Dev Basin 1.608 0.15 1,159 1 2 Mod Rational Post-Dev Basin A 1.674 0.08 1,105 Pond Route 1.291 0.20 3 **Detention Basin** 1,102 444.42 432 0.470 0.08 Post-Dev Basin B 4 Rational 188 5 1.384 0.17 Junction Total Post-Dev 1,285 3, 4

Pre-Dev Basin Hyd. No. 1

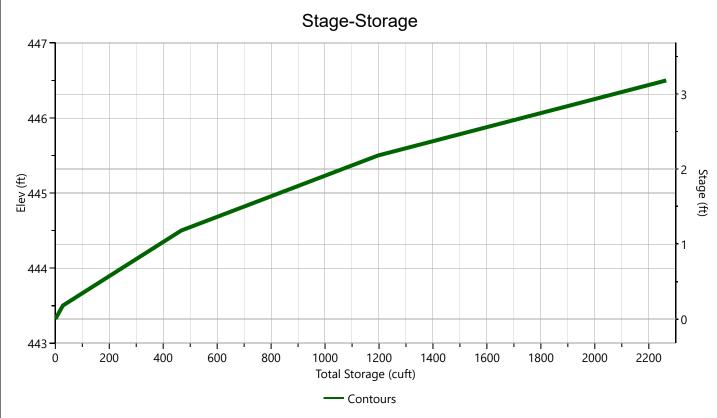

Hydrograph Type	= Rational	Peak Flow	= 1.608 cfs		
Storm Frequency	= 2-yr	Time to Peak	= 0.15 hrs		
Time Interval	= 1 min	Runoff Volume	= 1,159 cuft		
Drainage Area	= 0.56 ac	Runoff Coeff.	= 0.61		
Tc Method	= TR55	Time of Conc. (Tc)	= 9.0 min		
IDF Curve	= City of Bryant IDF Curve.idf	Intensity	= 4.71 in/hr		
Freq. Corr. Factor	= 1.00	Asc/Rec Limb Factor	Asc/Rec Limb Factors = 1/1.67		



Post-Dev Basin A

Hyd. No. 2

95. ~	0.000 0.0		3.333 3411
Target Q	= 0.000 cfs	Required Storage	= 0.000 cuft
Freq. Corr. Factor	= 1.00	Storm Duration	= 2.2 x Tc
IDF Curve	= City of Bryant IDF Curve.idf	Intensity	= 4.30 in/hr
Tc Method	= User	Time of Conc. (Tc)	= 5.0 min
Drainage Area	= 0.41 ac	Runoff Coeff.	= 0.95
Time Interval	= 1 min	Runoff Volume	= 1,105 cuft
Storm Frequency	= 2-yr	Time to Peak	= 0.08 hrs
Hydrograph Type	= Mod Rational	Peak Flow	= 1.674 cfs


Detention Basin Hyd. No. 3

Hydrograph Type	= Pond Route	Peak Flow	= 1.291 cfs
Storm Frequency	= 2-yr	Time to Peak	= 0.20 hrs
Time Interval	= 1 min	Hydrograph Volume	= 1,102 cuft
Inflow Hydrograph	= 2 - Post-Dev Basin A	Max. Elevation	= 444.42 ft
Pond Name	= Jamey South Detention Pond	Max. Storage	= 432 cuft
Pond Routing by Storage Inc	lication Method	Center of m	ass detention time = 5 min
	Qp = 1.29 cfs		
2]			
1.9			
1.8			
1.7			
1.6			
1.5			
1.4			
1.3			
1.2			
1.1			
O (cfs)			
	/		
0.9			
0.8			
0.7			
0.6			
0.5			
0.4			
0.3			
0.2			
0.1			
0			
Ö	10 20	30 40	5
	Time (min)		

Jamey South Detention Pond

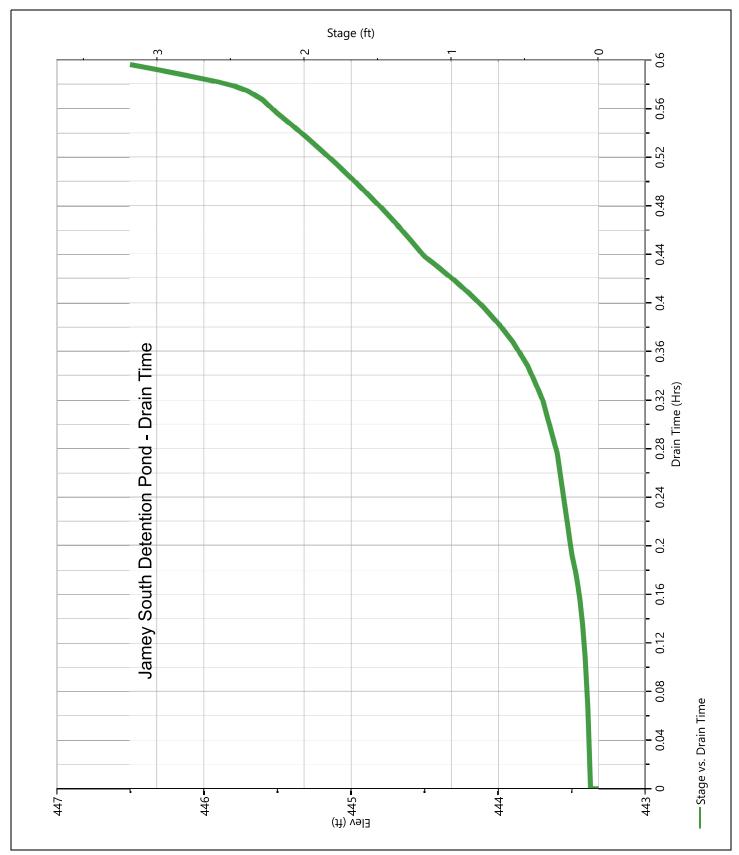
Stage-Storage

User Defined Contours				Stage / Stora	ge Table	
Description	Input	Stage (ft)	Elevation (ft)	Contour Area (sqft)	Incr. Storage (cuft)	Total Storage (cuft)
Bottom Elevation, ft	443.32	0.00	443.32	4	0.000	0.000
Voids (%)	100.00	0.00	443.50	306	27.9	27.9
Volume Calc	None	1.18	444.50	572	439	467
		2.18	445.50	887	730	1,196
		3.18	446.50	1,250	1,069	2,265

Jamey South Detention Pond

Stage-Discharge

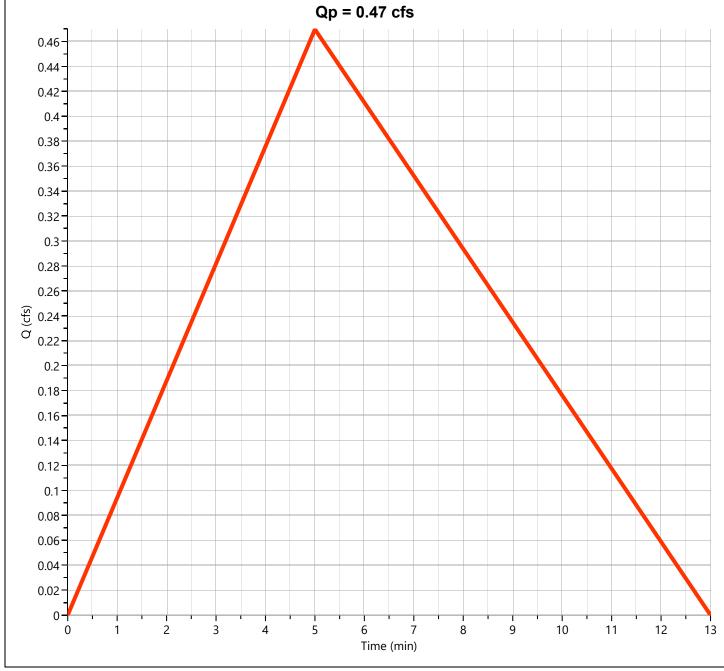
Cultivant / Onificas	Culverent	Orifices			Ouifice Plate	
Culvert / Orifices	Culvert	1*	2	3	Orifice Plate	
Rise, in	18	8			Orifice Dia, in	
Span, in	18	8			No. Orifices	
No. Barrels	1	1			Invert Elevation, ft	
Invert Elevation, ft	443.32	443.32			Height, ft	
Orifice Coefficient, Co	0.60	0.60			Orifice Coefficient, Co	
Length, ft	22					
Barrel Slope, %	1					
N-Value, n	0.012					
Weirs	Riser*		Weirs		Anoillana	
vveirs	Riser	1	2	3	Ancillary	
Shape / Type	Circular				Exfiltration, in/hr	
Crest Elevation, ft	445.5					
Crest Length, ft	12.5					
Angle, deg						
Weir Coefficient, Cw	3.3					


Stage-Discharge 446 2 (±) 445 **-**444 2 3 9 10 5 4 8 11 12 13 14 Discharge (cfs) — Top of Pond — Culvert — Riser — Orifice — Total Q

Jamey South Detention Pond

Stage-Storage-Discharge Summary

Jamey South Detention Pond

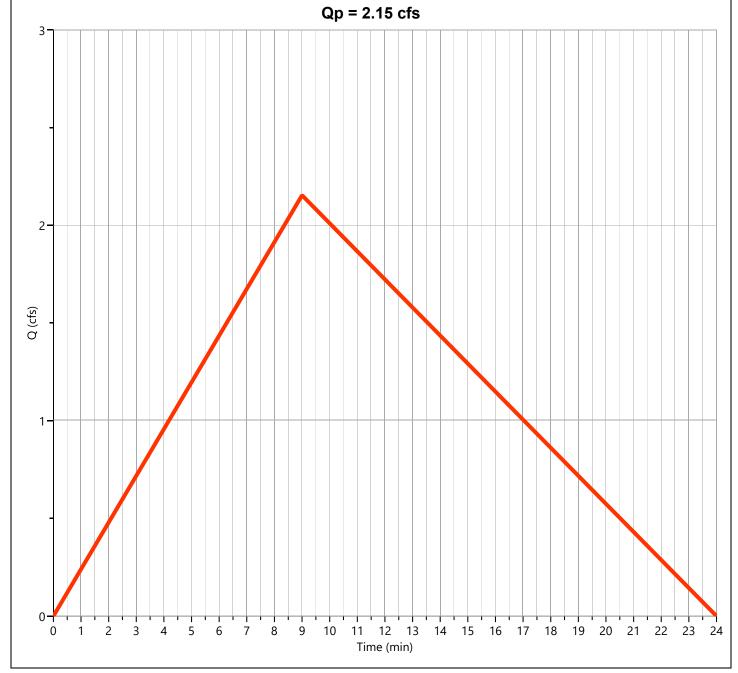

Pond Drawdown

Post-Dev Basin B

Hyd. No. 4

Hydrograph Type	= Rational	Peak Flow	= 0.470 cfs
Storm Frequency	= 2-yr	Time to Peak	= 0.08 hrs
Time Interval	= 1 min	Runoff Volume	= 188 cuft
Drainage Area	= 0.15 ac	Runoff Coeff.	= 0.51
Tc Method	= User	Time of Conc. (Tc)	= 5.0 min
IDF Curve	= City of Bryant IDF Curve.idf	Intensity	= 6.14 in/hr
Freq. Corr. Factor	= 1.00	Asc/Rec Limb Factors	s = 1/1.67

Total Post-Dev Hyd. No. 5


Hydrograph Type	= Junction	Peak Flow	= 1.384 cfs
Storm Frequency	= 2-yr	Time to Peak	= 0.17 hrs
Time Interval	= 1 min	Hydrograph Volume	= 1,285 cuft
Inflow Hydrographs	= 3, 4	Total Contrib. Area	= 0.15 ac
	Qp = 1.38 cfs		
2	<u> </u>		
1.9			
1.8			
-			
1.7			
1.6			
1.5			
1.4			
-			
1.3			
1.2			
1.1			
(g) 0 1 1			
0.9			
0.8			
0.7			
0.6			
0.5			
0.4			
0.3			
0.2			
0.1			
0 2 4	6 8 10 12 14 16 18 20 22 Time (min)	24 26 28 30 32 34 3	36 38 40 42
	— Detention Basin — Post-Dev Basin		

Hydrograph 10-yr Summary

08-05-2025 Hydrology Studio v 3.0.0.27 Hydrograph Volume Peak Time to Inflow Maximum Maximum Hyd. Hydrograph Hydrograph Flow Peak Hyd(s) Elevation Storage No. Name Type (hrs) (cuft) (cuft) (cfs) (ft) Rational Pre-Dev Basin 2.154 0.15 1,552 1 2 Mod Rational Post-Dev Basin A 2.244 0.08 1,481 Pond Route 1.544 0.22 3 **Detention Basin** 1,478 444.73 628 0.08 Post-Dev Basin B 0.628 252 4 Rational 5 0.13 Junction Total Post-Dev 1.723 1,723 3, 4

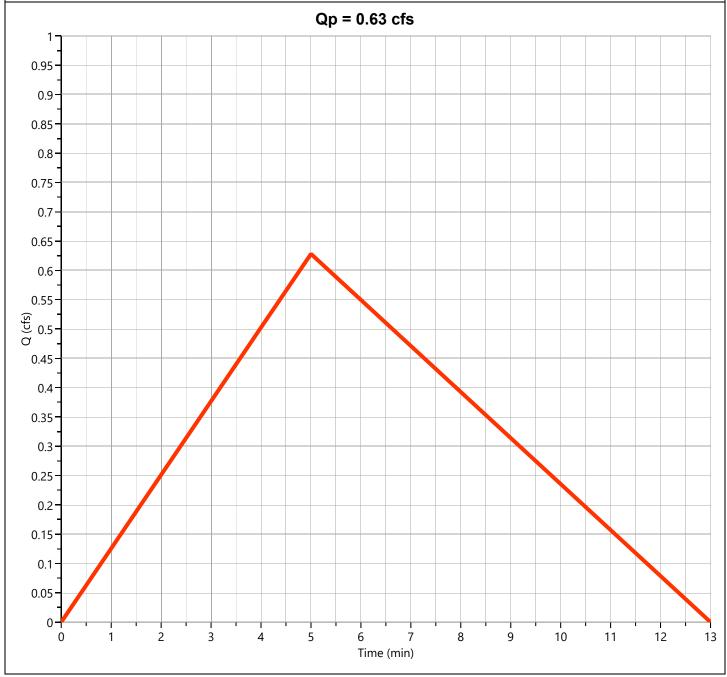
Pre-Dev Basin Hyd. No. 1

Hydrograph Type	= Rational	Peak Flow	= 2.154 cfs
Storm Frequency	= 10-yr	Time to Peak	= 0.15 hrs
Time Interval	= 1 min	Runoff Volume	= 1,552 cuft
Drainage Area	= 0.56 ac	Runoff Coeff.	= 0.61
Tc Method	= TR55	Time of Conc. (Tc)	= 9.0 min
IDF Curve	= City of Bryant IDF Curve.idf	Intensity	= 6.30 in/hr
Freq. Corr. Factor	= 1.00	Asc/Rec Limb Factors	s = 1/1.67

Post-Dev Basin A

Hyd. No. 2

Hydrograph Type	= Mod Rational	Peak Flow	= 2.244 cfs
Storm Frequency	= 10-yr	Time to Peak	= 0.08 hrs
Time Interval	= 1 min	Runoff Volume	= 1,481 cuft
Drainage Area	= 0.41 ac	Runoff Coeff.	= 0.95
Tc Method	= User	Time of Conc. (Tc)	= 5.0 min
IDF Curve	= City of Bryant IDF Curve.idf	Intensity	= 5.76 in/hr
Freq. Corr. Factor	= 1.00	Storm Duration	= 2.2 x Tc
Target Q	= 0.000 cfs	Required Storage	= 0.000 cuft
37	Qp = 2.24 cfs		
2 - (cts) O (- 1			
	3 4 5 6 7 8 9 Time (min)	10 11 12 13	14 15 16


Detention Basin Hyd. No. 3

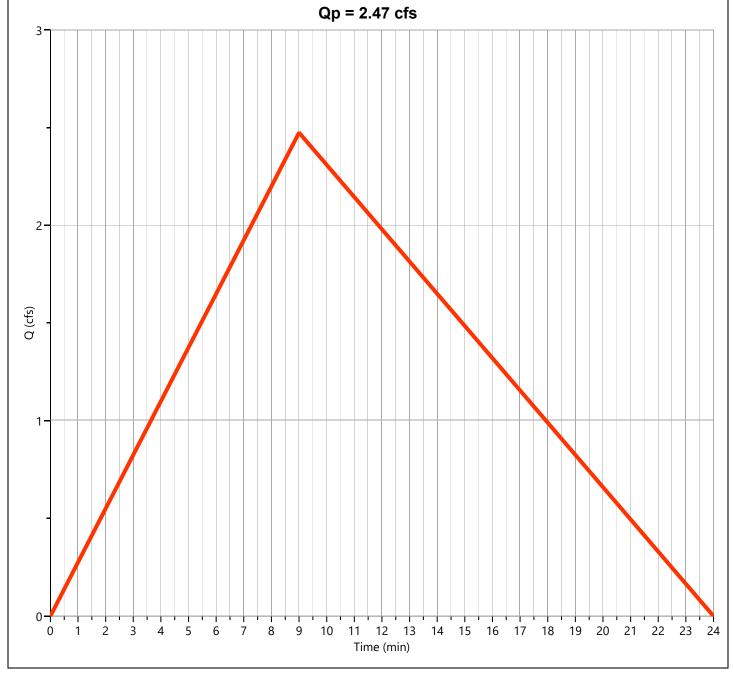
Hydrograph Type	= Pond Route	Peak Flow	= 1.544 cfs
Storm Frequency	= 10-yr	Time to Peak	= 0.22 hrs
Time Interval	= 1 min	Hydrograph Volume	= 1,478 cuft
Inflow Hydrograph	= 2 - Post-Dev Basin A	Max. Elevation	= 444.73 ft
Pond Name	= Jamey South Detention Pond	Max. Storage	= 628 cuft
Pond Routing by Storage Ind	ication Method	Center of m	ass detention time = 6 min
	Qp = 1.54 cfs		
2 (3) O 1			
0	10 20 3 Time (min)	40	50
Req'd Stor — Post-Dev Basin A — Detention Basin			
	neg a stor Tost Dev basili A	eterration busin	

Post-Dev Basin B

Hyd. No. 4

Hydrograph Type	= Rational	Peak Flow	= 0.628 cfs
Storm Frequency	= 10-yr	Time to Peak	= 0.08 hrs
Time Interval	= 1 min	Runoff Volume	= 252 cuft
Drainage Area	= 0.15 ac	Runoff Coeff.	= 0.51
Tc Method	= User	Time of Conc. (Tc)	= 5.0 min
IDF Curve	= City of Bryant IDF Curve.idf	Intensity	= 8.21 in/hr
Freq. Corr. Factor	= 1.00	Asc/Rec Limb Factors	s = 1/1.67

Total Post-Dev Hyd. No. 5


ïme Interval	= 10-yr = 1 min = 3, 4	Time to Peak Hydrograph Volume	= 0.13 hrs
		Hydrograph Volume	4 =00 6
nflow Hydrographs	-3/		= 1,723 cuft
	- 5, 4	Total Contrib. Area	= 0.15 ac
2	Qp = 1.72 cfs		
2 - 1.9 - 1.8 - 1.7 - 1.6 - 1.5 - 1.4 - 1.3 - 1.2 - 1.1 - 1.2 - 1.1 - 1.3 - 1.2 - 1.1 - 1.3 - 1.2 - 1.1 - 1.3 - 1.2 - 1.1 - 1.3 - 1.2 - 1.1 - 1.3 - 1.2 - 1.1 - 1.3 - 1.2 - 1.1 - 1.3 - 1.2 - 1.1 - 1.3 - 1.2 - 1.3 - 1.3 - 1.2 - 1.3 - 1.3 - 1.2 - 1.3 - 1.3 - 1.2 - 1.3 - 1.			
0 2 4 6	5 8 10 12 14 16 18 20 22 24 Time (min)	26 28 30 32 34	36 38 40 42

Hydrograph 25-yr Summary

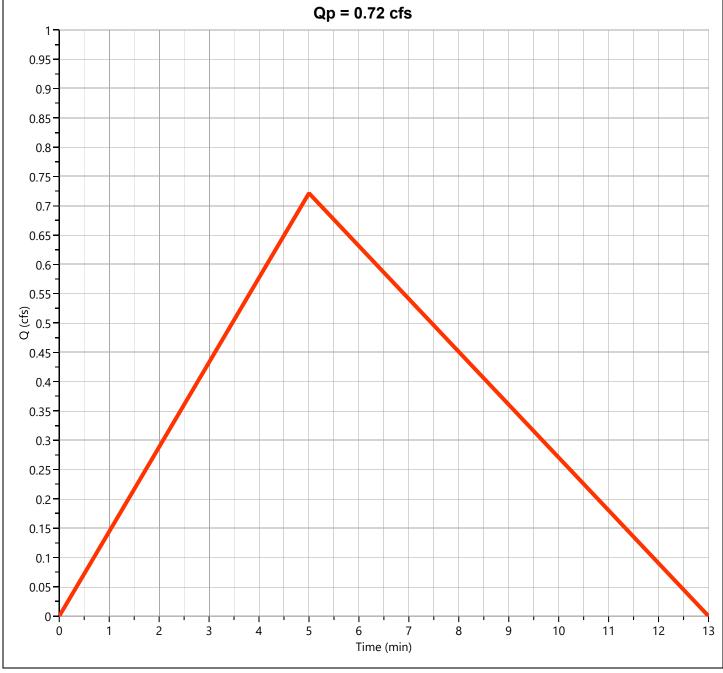
08-05-2025 Hydrology Studio v 3.0.0.27 Hydrograph Volume Peak Time to Inflow Maximum Maximum Hyd. Hydrograph Hydrograph Flow Peak Hyd(s) Elevation Storage No. Name Type (hrs) (cuft) (cuft) (cfs) (ft) Rational Pre-Dev Basin 2.474 0.15 1,784 1 2 Mod Rational Post-Dev Basin A 2.578 0.08 1,702 Pond Route 1.678 0.22 3 **Detention Basin** 1,699 444.91 762 0.08 Post-Dev Basin B 0.721 289 4 Rational 5 1.881 0.12 1,980 Junction Total Post-Dev 3, 4

Pre-Dev Basin Hyd. No. 1

Hydrograph Type	= Rational	Peak Flow	= 2.474 cfs
Storm Frequency	= 25-yr	Time to Peak	= 0.15 hrs
Time Interval	= 1 min	Runoff Volume	= 1,784 cuft
Drainage Area	= 0.56 ac	Runoff Coeff.	= 0.61
Tc Method	= TR55	Time of Conc. (Tc)	= 9.0 min
IDF Curve	= City of Bryant IDF Curve.idf	Intensity	= 7.24 in/hr
Freq. Corr. Factor	= 1.00	Asc/Rec Limb Factors	s = 1/1.67

Post-Dev Basin A

Hyd. No. 2


Hydrograph Type	= Mod Rational	Peak Flow	= 2.578 cfs
Storm Frequency	= 25-yr	Time to Peak	= 0.08 hrs
Time Interval	= 1 min	Runoff Volume	= 1,702 cuft
Drainage Area	= 0.41 ac	Runoff Coeff.	= 0.95
Tc Method	= User	Time of Conc. (Tc)	= 5.0 min
IDF Curve	= City of Bryant IDF Curve.idf	Intensity	= 6.62 in/hr
Freq. Corr. Factor	= 1.00	Storm Duration	= 2.2 x Tc
Target Q	= 0.000 cfs	Required Storage	= 0.000 cuft
	Qp = 2.58 cfs		
2- (SJ) O		10 11 12 13	14 15 16
	3 4 5 6 7 8 9 Time (min)	10 11 12 13	14 15 16

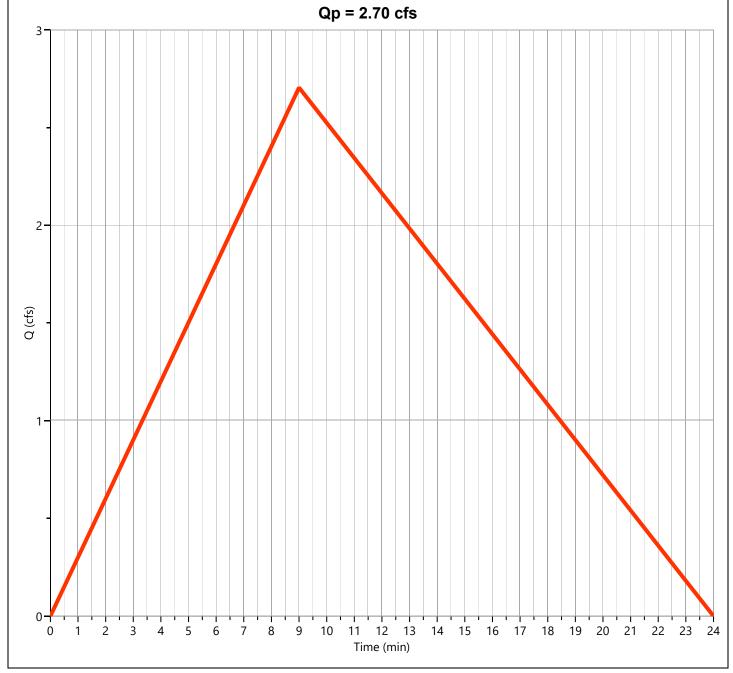
Detention Basin Hyd. No. 3

Hydrograph Type	= Pond Route	Peak Flow	= 1.678 cfs
Storm Frequency	= 25-yr	Time to Peak	= 0.22 hrs
Time Interval	= 1 min	Hydrograph Volume	= 1,699 cuft
Inflow Hydrograph	= 2 - Post-Dev Basin A	Max. Elevation	= 444.91 ft
Pond Name	= Jamey South Detention Pond	Max. Storage	= 762 cuft
Pond Routing by Storage Inc	dication Method	Center of m	ass detention time = 6 min
	Qp = 1.68 d	efs	
2- ((st)) O			
	10 20 Time (min		50

Post-Dev Basin B

Hydrograph Type	= Rational	Peak Flow = 0.721 cfs	
Storm Frequency	= 25-yr	Time to Peak = 0.08 hrs	
Time Interval	= 1 min	Runoff Volume = 289 cuft	
Drainage Area	= 0.15 ac	Runoff Coeff. = 0.51	
Tc Method	= User	Time of Conc. (Tc) = 5.0 min	
IDF Curve	= City of Bryant IDF Curve.idf	Intensity = 9.43 in/hr	
Freq. Corr. Factor	= 1.00	Asc/Rec Limb Factors = 1/1.67	

Total Post-Dev Hyd. No. 5


Hydrograph Type	= Junction		Peak Flow		= 1.88	31 cfs
Storm Frequency	= 25-yr		Time to Peak	(= 0.12	2 hrs
Time Interval	= 1 min		Hydrograph \	Volume	= 1,98	80 cuft
nflow Hydrographs	= 3, 4		Total Contrib	. Area	= 0.15	5 ac
	Qp = 1.88	cfs				
2						
1.9						
1.8						
1.7						
1.6						
1.5						
1.4						
1.3						
1.2						
1.1						
(g) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1						
0.9						
0.8						
0.7						
0.6						
0.5						
0.4						
0.3						
-						
0.2						
0.1						
0 2 4	6 8 10 12 14 16 18 20 22 Time	2 24 26	28 30 32	34 36	38 4	40 42
	Time	(111111)				

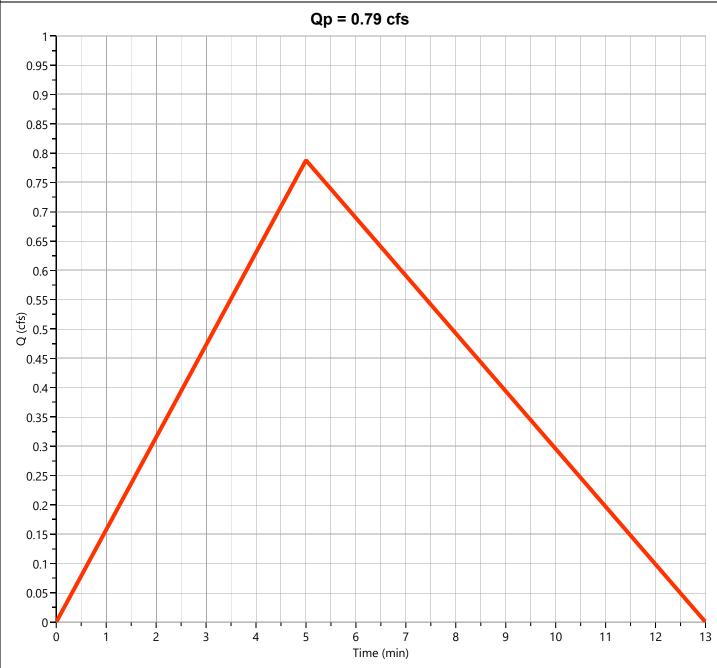
Hydrograph 50-yr Summary

08-05-2025 Hydrology Studio v 3.0.0.27 Hydrograph Volume Peak Time to Inflow Maximum Maximum Hyd. Hydrograph Hydrograph Flow Peak Hyd(s) Elevation Storage No. Type Name (hrs) (cuft) (cuft) (cfs) (ft) Rational Pre-Dev Basin 2.705 0.15 1,950 1 2 Mod Rational Post-Dev Basin A 2.819 0.08 1,861 Pond Route 1.776 0.22 445.04 3 **Detention Basin** 1,858 861 0.08 Post-Dev Basin B 0.788 4 Rational 316 5 1.995 0.12 Junction Total Post-Dev 2,165 3, 4

Pre-Dev Basin Hyd. No. 1

Hydrograph Type	= Rational	Peak Flow	= 2.705 cfs
Storm Frequency	= 50-yr	Time to Peak	= 0.15 hrs
Time Interval	= 1 min	Runoff Volume	= 1,950 cuft
Drainage Area	= 0.56 ac	Runoff Coeff.	= 0.61
Tc Method	= TR55	Time of Conc. (Tc)	= 9.0 min
IDF Curve	= City of Bryant IDF Curve.idf	Intensity	= 7.92 in/hr
Freq. Corr. Factor	= 1.00	Asc/Rec Limb Factors	s = 1/1.67

Post-Dev Basin A


Hydrograph Type	= Mod Rational	Peak Flow	= 2.819 cfs
Storm Frequency	= 50-yr	Time to Peak	= 0.08 hrs
Time Interval	= 1 min	Runoff Volume	= 1,861 cuft
Drainage Area	= 0.41 ac	Runoff Coeff.	= 0.95
Tc Method	= User	Time of Conc. (Tc)	= 5.0 min
IDF Curve	= City of Bryant IDF Curve.idf	Intensity	= 7.24 in/hr
Freq. Corr. Factor	= 1.00	Storm Duration	= 2.2 x Tc
Target Q	= 0.000 cfs	Required Storage	= 0.000 cuft
	Qp = 2.82 cfs		
2- (5j) O	3 4 5 6 7 8 9 Time (min)	10 11 12 13	14 15 16

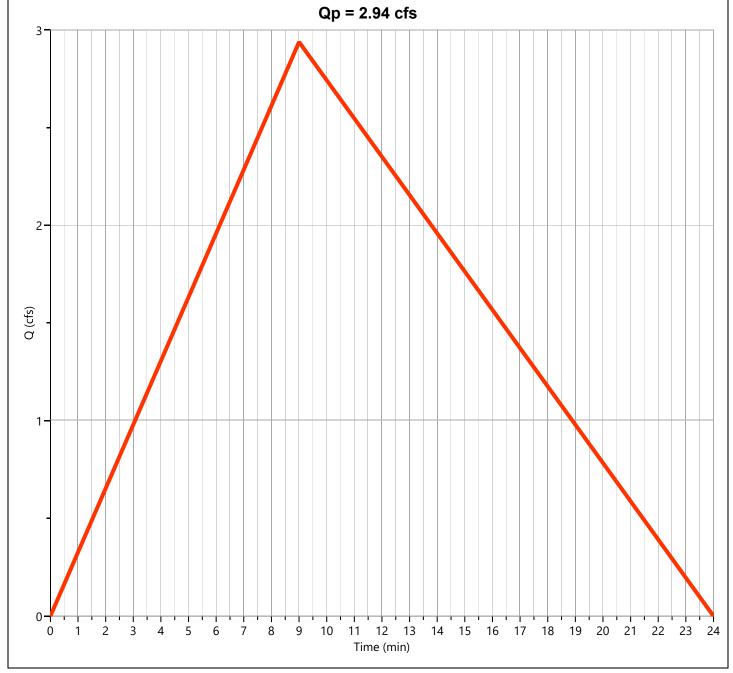
Detention Basin Hyd. No. 3

Hydrograph Type	= Pond Route	Peak Flow	= 1.776 cfs
Storm Frequency	= 50-yr	Time to Peak	= 0.22 hrs
Time Interval	= 1 min	Hydrograph Volume	= 0.22 firs = 1,858 cuft
Inflow Hydrograph	= 2 - Post-Dev Basin A	Max. Elevation	= 445.04 ft
Pond Name	= Jamey South Detention Pond	Max. Storage	= 861 cuft
Pond Routing by Storage Inc			ass detention time = 6 min
, one reading by elerage in			
37	Qp = 1.78 cfs		
2 (cts) O 1	10 20 3 Time (min) Req'd Stor — Post-Dev Basin A — Do		50
0	Time (min)		50

Post-Dev Basin B

Hydrograph Type	= Rational	Peak Flow	= 0.788 cfs
Storm Frequency	= 50-yr	Time to Peak	= 0.08 hrs
Time Interval	= 1 min	Runoff Volume	= 316 cuft
Drainage Area	= 0.15 ac	Runoff Coeff.	= 0.51
Tc Method	= User	Time of Conc. (Tc)	= 5.0 min
IDF Curve	= City of Bryant IDF Curve.idf	Intensity	= 10.30 in/hr
Freq. Corr. Factor	= 1.00	Asc/Rec Limb Factors	s = 1/1.67

Total Post-Dev Hyd. No. 5


Hydrograph Type	= Junction	Peak Flow	= 1.995 cfs
Storm Frequency	= 50-yr	Time to Peak	= 0.12 hrs
ime Interval	= 1 min	Hydrograph Volume	= 2,165 cuft
nflow Hydrographs	= 3, 4	Total Contrib. Area	= 0.15 ac
2	Qp = 1.99 cf	S	
1.9 - 1.8 - 1.7 - 1.6 - 1.5 - 1.4 - 1.3 - 1.2 - 1.1 -			
0.9 0.8 0.7 0.6 0.5			
0.4 - 0.3 - 0.2 - 0.1 - 0.1 - 0.2 - 4	6 8 10 12 14 16 18 20 22 24 Time (min	4 26 28 30 32 34 36	38 40 42 44

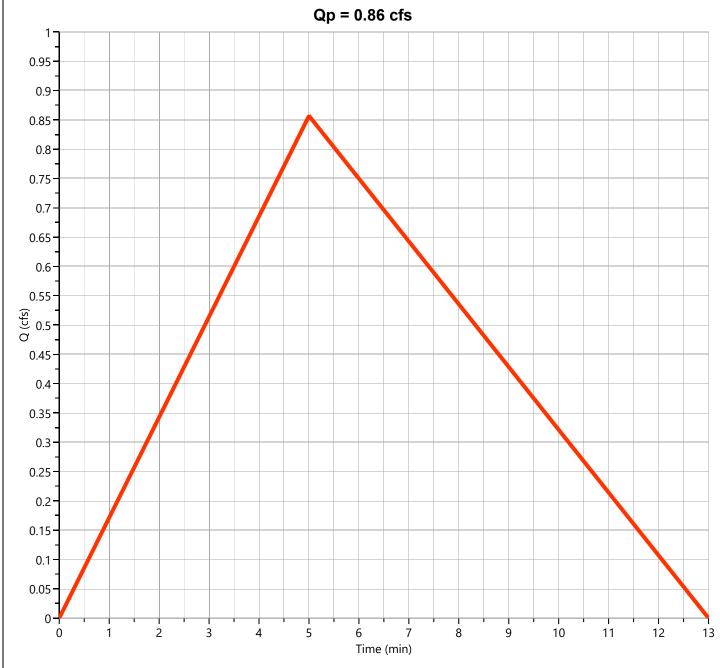
Hydrograph 100-yr Summary

Hyd. No.	Hydrograph Type	Hydrograph Name	Peak Flow (cfs)	Time to Peak (hrs)	Hydrograph Volume (cuft)	Inflow Hyd(s)	Maximum Elevation (ft)	Maximum Storage (cuft)
1	Rational	Pre-Dev Basin	2.938	0.15	2,118			
2	Mod Rational	Post-Dev Basin A	3.062	0.08	2,021			
3	Pond Route	Detention Basin	1.872	0.22	2,018	2	445.18	963
4	Rational	Post-Dev Basin B	0.857	0.08	343			
5	Junction	Total Post-Dev	2.098	0.12	2,352	3, 4		

Pre-Dev Basin Hyd. No. 1

Hydrograph Type	= Rational	Peak Flow	= 2.938 cfs
Storm Frequency	= 100-yr	Time to Peak	= 0.15 hrs
Time Interval	= 1 min	Runoff Volume	= 2,118 cuft
Drainage Area	= 0.56 ac	Runoff Coeff.	= 0.61
Tc Method	= TR55	Time of Conc. (Tc)	= 9.0 min
IDF Curve	= City of Bryant IDF Curve.idf	Intensity	= 8.60 in/hr
Freq. Corr. Factor	= 1.00	Asc/Rec Limb Factors	s = 1/1.67

Post-Dev Basin A


Hydrograph Type	= Mod Rational	Peak Flow	= 3.062 cfs
Storm Frequency	= 100-yr	Time to Peak	= 0.08 hrs
Time Interval	= 1 min	Runoff Volume	= 2,021 cuft
Drainage Area	= 0.41 ac	Runoff Coeff.	= 0.95
Tc Method	= User	Time of Conc. (Tc)	= 5.0 min
IDF Curve	= City of Bryant IDF Curve.idf	Intensity	= 7.86 in/hr
Freq. Corr. Factor	= 1.00	Storm Duration	= 2.2 x Tc
Target Q	= 0.000 cfs	Required Storage	= 0.000 cuft
	Qp = 3.06 cfs		
3- (SJ)2- O 1- 1-	3 4 5 6 7 8 9	10 11 12 13	14 15 16
	3 4 5 6 7 8 9 Time (min)	10 11 12 13	14 15 16

Detention Basin Hyd. No. 3

Hydrograph Type	= Pond Route	Peak Flow	= 1.872 cfs
Storm Frequency	= 100-yr	Time to Peak	= 0.22 hrs
Time Interval	= 1 min	Hydrograph Volume	= 2,018 cuft
Inflow Hydrograph	= 2 - Post-Dev Basin A	Max. Elevation	= 445.18 ft
Pond Name	= Jamey South Detention Pond	Max. Storage	= 963 cuft
Pond Routing by Storage Indi	ication Method	Center of m	ass detention time = 7 min
	Qp = 1.87 cfs		
(sj.) 2			
0	10 20 30) 40	50
	Time (min)		
		etention Basin	

Post-Dev Basin B

Hydrograph Type	= Rational	Peak Flow	= 0.857 cfs
Storm Frequency	= 100-yr	Time to Peak	= 0.08 hrs
Time Interval	= 1 min	Runoff Volume	= 343 cuft
Drainage Area	= 0.15 ac	Runoff Coeff.	= 0.51
Tc Method	= User	Time of Conc. (Tc)	= 5.0 min
IDF Curve	= City of Bryant IDF Curve.idf	Intensity	= 11.20 in/hr
Freq. Corr. Factor	= 1.00	Asc/Rec Limb Factors	s = 1/1.67

Total Post-Dev Hyd. No. 5

Hydrograph Type	= Junction	Peak Flow	= 2.098 cfs
Storm Frequency	= 100-yr	Time to Peak	= 0.12 hrs
Time Interval	= 1 min	Hydrograph Volume	= 2,352 cuft
Inflow Hydrographs	= 3, 4	Total Contrib. Area	= 0.15 ac
Qp = 2.10 cfs			
2- ((s)) O	φ - 2.10 clls		
0 2 4 6	8 10 12 14 16 18 20 22 24 26 2	8 30 32 34 36 38	40 42 44 46
Time (min)			
— Detention Basin — Post-Dev Basin B — Total Post-Dev			