NEW FACILITY FOR:
 BUTLER CENTER
 CITY OF BRYANT, AR
 DRAINAGE CALCULATIONS - SUMMARY
 3/2/2023

DESCRIPTION OF PROJECT

Butler center is an approximately 1.51 Acre development located in the City of Bryant, Arkansas approximately a mile south of Reynolds Road. There are three drainage basins on the site. Eastern and Southern basins are small and will not be detained. The large basin will be detained in a pipe network storage located in the western end of the site. The detention for the storage network will be underground in $30^{\prime \prime}$ HDPE pipe.

Stormwater Calculations were prepared with the intent to comply with the City of Bryant's Drainage Code. The primary intent of this analysis is to produce a drainage system adequately sized to convey post development runoff while attenuating post development discharge levels equal to or less than pre development flows.

Hydraulic calculations were made using the Rational Method. Design frequencies were analyzed for 2, 5, $10,25,50$, and 100 year return periods.

These calculations are divided into the following sections:

Summary of Drainage Basins

Summary of Inlets

Summary of Pipes

Pipe Network Storage Summary

Appendices

Exhibit A - Pre-Development Drainage Basins
Exhibit B - Post-Development Drainage Basins

NEW FACILITY FOR:
 BUTLER CENTER
 CITY OF BRYANT, AR
 DRAINAGE CALCULATIONS - SUMMARY
 3/2/2023

SUMMARY OF DRAINAGE BASINS

PRE-DEVELOPMENT CONDITIONS

There are three drainage basins on the site. Basin 1 drains to east side and Basin 3 drains to south side of the site. This discharge will not be captured. Basin 2 is developed. This discharge will be captured. The existing site is a mixture of gravel, grass and a building.

POST-DEVELOPMENT CONDITIONS

As previously described, this site is being developed into a commercial facility. Slopes range from 1% to 8%. Runoff drains from the developed areas to underground detention in the south western section of the development.

SUMMARY OF INLETS

On the drainage plan you will see labels for all of the inlets for these calculations. The flows shown are for the 10-year return storm. The distance from the face of the curb to the center of the street is 15 feet.

SUMMARY OF PIPES

All pipes used in this project are HDPE and RCP. Therefore, a manning's of 0.012 was used on all pipes in the analysis.

PIPE NETWORK STORAGE SUMMARY

The pipe network storage in these calculations detains flows from all of the runoff of the site. The pipe network storage is located in the south western portion of the property. Water collected in the storm water system is discharged into the pipe network via curb inlets. The pipe network storage is made of 263 linear feet of $30^{\prime \prime}$ HDPE and RCP pipe and has a volume of $1,289 \mathrm{cf}$. A concrete control structure is constructed on the southern end of the pipe network storage. This control structure uses a slotted weir to limit the discharge through the structure to that of the $2,10,25,50$, and 100 -year pre-development flow. The pipe network storage is designed to hold the 100-year storm event.

Stormwater Calcs - Butler Center
Using Rational Method

Pre-development

Calculated Tc values - Drainage Basin 1 \& 3

 $\mathrm{Tc}=\underline{56^{*} \mathrm{~L}^{\wedge} .6{ }^{*} \mathrm{n}^{\wedge} .6}$ seconds $\mathrm{i}^{\wedge} .4{ }^{*} \mathrm{~S}^{\wedge} .3$| $\mathrm{L} 1=$ | 100 | feet | |
| ---: | :---: | :---: | :---: |
| $\mathrm{n} 1=$ | 0.03 | | |
| $\mathrm{~S} 1=$ | 0.032 | $\mathrm{ft} / \mathrm{ft}$ | |
| $\mathrm{I}_{\text {assumed }}=$ | 8.40 | inches | |
| $\mathrm{TC}_{\text {calculated }}$ | | 130 seconds | |
| $\mathrm{TC}_{\text {calculated }}$ | | | 2.16 minutes |
| $\mathrm{Tc}=$ | 2.16 | minutes
 inches | |
| $\mathrm{I}=$ | 8.40 | | |
| Use Tc | | $\mathbf{5 . 0 0}$ | minutes |

Calculated Tc values - Drainage Basin 2
$\mathrm{Tc}=\frac{56^{*} L^{\wedge} .6^{*} \mathrm{n}^{\wedge} .6}{\mathrm{i}^{\wedge} .4 * \mathrm{~S}^{\wedge} 3}$ seconds

$\mathrm{L} 1=$	320	feet	
$\mathrm{n} 1=$	0.03		
$\mathrm{~S} 1=$	0.032	$\mathrm{ft} / \mathrm{ft}$	
$\mathrm{I}_{\text {assumed }}=$	8.40	inches $\mathrm{Tc}_{\text {calculated }}$	
$\mathrm{Tc}_{\text {calculated }}$			261 seconds
		4.35 minutes	

Tc for 25-yr Storm from Exhibit 400-1 of Bryant Drainage Manual i for 25-yr Storm from Exhibit 400-1 of Bryant Drainage Manual

$\mathbf{I}_{\mathbf{1 0 0}}=$	10 Inches	$\mathbf{I}_{\mathbf{1 0}}=$	7.2 Inches
$\mathbf{I}_{\mathbf{5 0}}=$	9.2 Inches	$\mathbf{I}_{\mathbf{5}=}$	6.5 Inches
$\mathbf{I}_{\mathbf{2 5}}=$	8.40 Inches	$\mathbf{I}_{\mathbf{2}=}$	5.6 Inches

Tc for 25-yr Storm from Exhibit 400-1 of Bryant Drainage Manual i for 25-yr Storm from Exhibit 400-1 of Bryant Drainage Manual

$\mathbf{I}_{\mathbf{1 0 0}}=$	10 Inches	$\mathbf{I}_{\mathbf{1 0}}=$	7.2 Inches
$\mathbf{I}_{\mathbf{5 0}=}$	9.2 Inches	$\mathbf{I}_{\mathbf{5}=}$	6.5 Inches
$\mathbf{I}_{\mathbf{2 5}=}$	8.40 Inches	$\mathbf{I}_{\mathbf{2}=}$	5.6 Inches

Stormwater Calcs - Butler Center
Using Rational Method

Post-development

Calculated Tc values - Drainage Basin 1, 2 \& 3 $\mathrm{Tc}=\underline{56^{*} \mathrm{~L}^{\wedge} .6^{*} \mathrm{n}^{\wedge} .6}$ seconds $\mathrm{i}^{\wedge} .4{ }^{*} \mathrm{~S}^{\wedge} .3$

L 1	$=$	320	feet
n 1	$=$	0.013	
S 1	$=$	0.035	$\mathrm{ft} / \mathrm{ft}$
$\mathrm{I}_{\text {assumed }}=$	8.40	inches	
$\mathrm{TC}_{\text {calculated }}$			154 seconds
$\mathrm{TC}_{\text {calculated }}$			2.56 minutes
Tc	$=$	2.56	minutes inches
I		8.40	
Use Tc	$=$	$\mathbf{5 . 0 0}$	
minutes			

Tc for 25-yr Storm from Exhibit 400-1 of Bryant Drainage Manual i for 25-yr Storm from Exhibit 400-1 of Bryant Drainage Manual

$\mathbf{I}_{\mathbf{1 0 0}}=$	10 Inches	$\mathbf{I}_{\mathbf{1 0}}=$	7.2 Inches
$\mathbf{I}_{\mathbf{5 0}}=$	9.2 Inches	$\mathbf{I}_{\mathbf{5}=}$	6.5 Inches
$\mathbf{I}_{\mathbf{2 5}}=$	8.40 Inches	$\mathbf{I}_{\mathbf{2}=}$	5.6 Inches

Stormwater Calcs - Butler Center

Pre-development

Calculated C values - Drainage Basin 1
Area $\mathrm{C}_{100} \quad \mathrm{C}_{50} \quad \mathrm{C}_{25} \quad \mathrm{C}_{10} \quad \begin{gathered}\mathrm{C}_{5}\end{gathered}$

Greenspace	0.08	0.47	0.43	0.4	0.36	0.34	0.31
Driveway	0.09	0.97	0.92	0.88	0.83	0.8	0.75
Total Area $=$	$\mathbf{0 . 1 7}$	$\mathbf{0 . 7 3}$	$\mathbf{0 . 6 9}$	$\mathbf{0 . 6 5}$	$\mathbf{0 . 6 1}$	$\mathbf{0 . 5 8}$	$\mathbf{0 . 5 4}$

(C values taken from Table 400-2 of City of Bryant Drainage Manual)

Flat, 0-2\%
Road
(C values taken from Table 400-2 of City of Bryant Drainage Manual)

Flat, 0-2\%
Gravel
Roof
(C values taken from Table 400-2 of City of Bryant Drainage Manual)

Flat, 0-2\%

Stormwater Calcs - Butler Center
using Rational Method

Post-development

Calculated C values - Drainage Basin 1

Calculated C values - Drainage Basin 2

Greenspace	0.05	0.46	0.42	0.39	0.35	0.32	0.29
Roof/Pavement	0.90	0.97	0.92	0.88	0.83	0.8	0.75
Total Area $=$	$\mathbf{0 . 9 5}$	$\mathbf{0 . 9 4}$	$\mathbf{0 . 8 9}$	$\mathbf{0 . 8 5}$	$\mathbf{0 . 8 0}$	$\mathbf{0 . 7 7}$	$\mathbf{0 . 7 3}$

| Calculated C values - Drainage Basin 3 | Area | C_{100} | C_{50} | C_{25} | C_{10} | C_{5} | C_{2} |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Greenspace	0.34	0.46	0.42	0.39	0.35	0.32	0.29
Total Area $=$	$\mathbf{0 . 3 4}$	$\mathbf{0 . 4 6}$	$\mathbf{0 . 4 2}$	$\mathbf{0 . 3 9}$	$\mathbf{0 . 3 5}$	$\mathbf{0 . 3 2}$	$\mathbf{0 . 2 9}$

(C values taken from Table 400-2 of City of Bryant Drainage Manual) Good Condition, Average 2-7\%
(C values taken from Table 400-2 of City of Bryant Drainage Manual) Good Condition, Average 2-7\%

Road
(C values taken from Table 400-2 of City of Bryant Drainage Manual) Good Condition, Average 2-7\%

Stormwater Calcs - Butler Center

using Rational Method
Pre-development

Drainage Basin 1												
	$\mathrm{Q}_{100}=$	1.25 CFS	$\mathrm{Q}_{50}=$	1.08 CFS	$\mathrm{Q}_{25}=$	0.93 CFS	$\mathrm{Q}_{10}=$	0.75 CFS	$\mathrm{Q}_{5}=$	0.64 CFS	$\mathrm{Q}_{2}=$	0.52 CFS
	$\mathrm{c}=$	0.73	c =	0.69	c =	0.65	c =	0.61	$c=$	0.58	$c=$	0.54
	i=	$10.00 \mathrm{in} / \mathrm{hr}$	i=	$9.20 \mathrm{in} / \mathrm{hr}$	i=	$8.40 \mathrm{in} / \mathrm{hr}$	i=	$7.20 \mathrm{in} / \mathrm{hr}$	$\mathrm{i}=$	$6.50 \mathrm{in} / \mathrm{hr}$	i=	$5.60 \mathrm{in} / \mathrm{hr}$
	$A=$	0.17 acres	$A=$	0.17 acres	$A=$	0.17 acres	A=	0.17 acres	$\mathrm{A}=$	0.17 acres	$\mathrm{A}=$	0.17 acres
Drainage Basin 2												
	$\mathrm{Q}_{100}=$	5.79 CFS	$\mathrm{Q}_{50}=$	4.85 CFS	$\mathrm{Q}_{25}=$	4.12 CFS	$\mathrm{Q}_{10}=$	3.13 CFS	$\mathrm{Q}_{5}=$	2.66 CFS	$\mathrm{Q}_{2}=$	2.08 CFS
	$c=$	0.49	$c=$	0.45	$c=$	0.42	$c=$	0.37	$\mathrm{c}=$	0.35	$\mathrm{c}=$	0.32
	i=	$10.00 \mathrm{in} / \mathrm{hr}$	i=	$9.20 \mathrm{in} / \mathrm{hr}$	i=	$8.40 \mathrm{in} / \mathrm{hr}$	i=	$7.20 \mathrm{in} / \mathrm{hr}$	$\mathrm{i}=$	$6.50 \mathrm{in} / \mathrm{hr}$	i=	$5.60 \mathrm{in} / \mathrm{hr}$
	$\mathrm{A}=$	1.18 acres	$\mathrm{A}=$	1.18 acres	$A=$	1.18 acres	$\mathrm{A}=$	1.18 acres	$A=$	1.18 acres	$\mathrm{A}=$	1.18 acres
Drainage Basin 3												
	$\mathrm{Q}_{100}=$	0.75 CFS	$\mathrm{Q}_{50}=$	0.63 CFS	$\mathrm{Q}_{25}=$	0.54 CFS	$\mathrm{Q}_{10}=$	0.41 CFS	$\mathrm{Q}_{5}=$	0.35 CFS	$\mathrm{Q}_{2}=$	0.28 CFS
	$\mathrm{c}=$	0.47	$\mathrm{c}=$	0.43	$\mathrm{c}=$	0.40	$\mathrm{c}=$	0.36	$\mathrm{c}=$	0.34	$c=$	0.31
	i=	$10.00 \mathrm{in} / \mathrm{hr}$	i=	$9.20 \mathrm{in} / \mathrm{hr}$	i=	$8.40 \mathrm{in} / \mathrm{hr}$	i=	$7.20 \mathrm{in} / \mathrm{hr}$	$\mathrm{i}=$	$6.50 \mathrm{in} / \mathrm{hr}$	$\mathrm{i}=$	$5.60 \mathrm{in} / \mathrm{hr}$
	$A=$	0.16 acres	$\mathrm{A}=$	0.16 acres								

Post-development

Drainage Basin 1												
	$\mathrm{Q}_{100}=$	0.60 CFS	$\mathrm{Q}_{50}=$	0.50 CFS	$\mathrm{Q}_{25}=$	0.43 CFS	$\mathrm{Q}_{10}=$	0.33 CFS	$\mathrm{Q}_{5}=$	0.27 CFS	$\mathrm{Q}_{2}=$	0.21 CFS
	$\mathrm{c}=$	0.46	$c=$	0.42	$\mathrm{c}=$	0.39	$\mathrm{c}=$	0.35	$\mathrm{c}=$	0.32	$\mathrm{c}=$	0.29
	i=	$10.00 \mathrm{in} / \mathrm{hr}$	i=	$9.20 \mathrm{in} / \mathrm{hr}$	i=	$8.40 \mathrm{in} / \mathrm{hr}$	i=	$7.20 \mathrm{in} / \mathrm{hr}$	i=	$6.50 \mathrm{in} / \mathrm{hr}$	i=	$5.60 \mathrm{in} / \mathrm{hr}$
	$A=$	0.13 acres										
Drainage Basin 2												
	$\mathrm{Q}_{100}=$	8.96 CFS	$\mathrm{Q}_{50}=$	7.81 CFS	$\mathrm{Q}_{25}=$	6.82 CFS	$\mathrm{Q}_{10}=$	5.50 CFS	$\mathrm{Q}_{5}=$	4.78 CFS	$\mathrm{Q}_{2}=$	3.86 CFS
	$\mathrm{c}=$	0.94	$\mathrm{c}=$	0.89	$\mathrm{c}=$	0.85	$\mathrm{c}=$	0.80	$\mathrm{c}=$	0.77	$c=$	0.73
	i=	$10.00 \mathrm{in} / \mathrm{hr}$	i=	$9.20 \mathrm{in} / \mathrm{hr}$	i=	$8.40 \mathrm{in} / \mathrm{hr}$	i=	$7.20 \mathrm{in} / \mathrm{hr}$	i=	$6.50 \mathrm{in} / \mathrm{hr}$	i=	$5.60 \mathrm{in} / \mathrm{hr}$
	$\mathrm{A}=$	0.95 acres	$A=$	0.95 acres	A=	0.95 acres	A $=$	0.95 acres	A=	0.95 acres	A $=$	0.95 acres
Drainage Basin 3												
	$\mathrm{Q}_{100}=$	1.56 CFS	$\mathrm{Q}_{50}=$	1.31 CFS	$\mathrm{Q}_{25}=$	1.11 CFS	$\mathrm{Q}_{10}=$	0.86 CFS	$\mathrm{Q}_{5}=$	0.71 CFS	$\mathrm{Q}_{2}=$	0.55 CFS
	$\mathrm{c}=$	0.46	$\mathrm{c}=$	0.42	$\mathrm{c}=$	0.39	$\mathrm{c}=$	0.35	$c=$	0.32	$c=$	0.29
	i=	$10.00 \mathrm{in} / \mathrm{hr}$	i=	$9.20 \mathrm{in} / \mathrm{hr}$	i=	$8.40 \mathrm{in} / \mathrm{hr}$	$\mathrm{i}=$	$7.20 \mathrm{in} / \mathrm{hr}$	i=	$6.50 \mathrm{in} / \mathrm{hr}$	i=	$5.60 \mathrm{in} / \mathrm{hr}$
	$A=$	0.34 acres	$A=$	0.34 acres	$A=$	0.34 acres	A $=$	0.34 acres	A=	0.34 acres	$A=$	0.34 acres

Detention Volume

Pond-1 for Q100		
	Cundev=	0.49
	lundev=	$10.00 \mathrm{in} / \mathrm{hr}$
	Cdev=	0.94
	Idev=	$10.00 \mathrm{in} / \mathrm{hr}$
	$\mathrm{R}=$	4.52
	$A=$	0.95 acres
	Tc=	5.00 minutes
		$60 \mathrm{sec} / \mathrm{min}$
Detention Volume=		1,289 cubic feet

[^0]Stormwater Calcs - Butler Center using Rational Method
Weir \& Detention Pond Sizing

Storm Event Flow (cfs)

Q2 - Pre Basin 2	2.08
Q10 - Pre Basin 2	3.13
Q25 - Pre Basin 2	4.12
Q50 - Pre Basin 2	4.85
Q100 - Pre Basin 2	5.79
Q10 - Post Basin 2	5.50
Q25 - Post Basin 2	6.82
Q100 - Post Basin 2	8.96

Rectangular Weir

Pond Volume		
Volume Required		
Use 36" Pipe		
Dia $=$	30.00	
A	$=$	4.91 SF
L (required)	$=$	262.61 FT

Stormwater Calcs - Butler Center
Detention Culverts

PIPE NAME	DIAMETER (IN)	LENGTH (FT)	AREA (SF)	VOLUME (CF)
PIPE 141	30.00	117	4.91	574.47
PIPE 139	30.00	121	4.91	594.11
PIPE 140	30.00	46	4.91	$\mathbf{2 2 5 . 8 6}$
TOTAL		284		$\mathbf{1 3 9 4 . 4 4}$

OUTLET CULVERT
Pipe From
Design Flow (cfs): Slope (ft/ft): Diameter (inches) No. Pipes Manning's Area Full (sf) 0.0050

Stormwater Calcs - Butler Center

Ditch Capacity

Mannings equation for ditch
$n=0.022$ based on n for open channel earth with short grass, few weeds Width
Depth Bottom
(ft) (ft)
$0.75 \quad 0.00$
Top
(ft)
area
$\left(\mathrm{ft}^{\wedge} 2\right)$
4.50
1.69 rH
slope
$(\mathrm{ft} / \mathrm{ft}) \quad(\mathrm{ft} / \mathrm{s})$
Q
(cfs)

Stormwater Calcs - Butler Center

Using Rational Method

Post-development Basin

Calculated Tc values - Drainage Basin Cl-1

$\mathrm{Tc}=\underline{56 \mathrm{~L}^{\wedge} .6^{*} \mathrm{n}^{\wedge} .6}$ seconds		
$\mathrm{i}^{\wedge} .4$ * ${ }^{\wedge} .3$		
L1 =	700	feet
n1 =	0.013	Smooth Concrete/Asphalt
S1 =	0.031	$\mathrm{ft} / \mathrm{ft}$
$\mathrm{l}_{\text {assumed }}=$	7.20	inches
Tc calculated	271 seconds	
Tc calculated	4.52 minutes	
$\mathrm{Tc}=$	4.52	minutes
$1=$	7.20	inches
Use Tc =	5.00	minutes

Stormwater Calcs - Butler Center using Rational Method
POST-DEV C VALUES

Cl-1	Area	$\mathbf{C l}_{10}$	$\mathbf{C l}_{25}$	\mathbf{C}_{100}	(C values taken from Table 400-2 of City of Bryant Drainage Manual)
	0.41	0.83	0.88	0.97	Asphalt/Roof
Total Area $=$	0.41	0.83	$\mathbf{0 . 8 8}$	$\mathbf{0 . 9 7}$	

Cl-2	Area	\mathbf{C}_{10}	\mathbf{C}_{25}	$\mathbf{C l}_{100}$	(C values taken from Table 400-2 of City of Bryant Drainage Manual)
	0.09	0.83	0.88	0.97	Asphalt/Roof
Total Area $=$	$\mathbf{0 . 0 9}$	$\mathbf{0 . 8 3}$	$\mathbf{0 . 8 8}$	$\mathbf{0 . 9 7}$	

Cl-4					
	Area	C_{10}	C_{25}	C_{100}	(C values taken from Table 400-2 of City of Bryant Drainage Manual)
	0.29	0.83	0.88	0.97	Asphalt/Roof
Total Area $=$	0.29	0.83	0.88	0.97	

Stormwater Calcs - Butler Center
using Rational Method
Post Development Flowrates

Stormwater Calcs - Butler Center GUTTER SPREAD 10-YR STORM

Cl-1

Cl-2

$$
\begin{gathered}
2.45 \mathrm{cfs} \\
0.012 \\
0.56 \\
0.028 \\
0.031 \\
\underline{\mathbf{5 . 9 6}} \mathrm{ft}
\end{gathered}
$$

$$
\begin{aligned}
& \mathrm{Q}=\text { Flowrate(cfs) } \\
& \mathrm{n}=\text { manning's number } \\
& \mathrm{k}=0.56 \\
& \mathrm{~S}_{\mathrm{x}}=\text { cross slope } \\
& \mathrm{S}_{\mathrm{L}}=\text { longitudinal slope } \\
& \mathrm{T}=\text { Gutter Spread }
\end{aligned}
$$

Cl-4

$$
\mathrm{T}=\quad\left(\mathrm{k}_{\mathrm{u}}^{*} \frac{\mathrm{Q}^{*} \mathrm{n}}{\mathrm{~S}_{\mathrm{x}} \wedge 1.67 * \mathrm{~S}_{\mathrm{L}} \wedge 0.5}\right) \wedge .375
$$

1.73 cfs
0.012
0.56
0.028
0.03
5.34 ft

Stormwater Calcs - Butler Center - CURB INLETS

10-YEAR STORM		Weir					Required	Actual	
				Q	Q=3.0LY^1.5				
Area \#	Area	1	C	(cfs)	Q (cfs)	Y (ft)	L (ft)	L (ft)	
$\mathrm{Cl}-1$	0.41	7.20	0.83	2.45	2.45	0.49	2.38	5	5' box
$\mathrm{Cl}-2$	0.09	7.20	0.83	0.54	0.54	0.49	0.52	5	5' box
Cl-4	0.29	7.20	0.83	1.73	1.73	0.49	1.68	5	5' box

[^0]: R= (Cdev*Idev)-(Cundev*lundev)
 Detention Volume $=R^{*} A^{*} T c^{*} 60$

