Stone Luxary Living Lift Station
Sewage Lift Station
Lift Station Capacity

Pump Design Flowrate $\quad \mathbf{7 5}$ gpm Per Holloway As-builts

Estimate Average Flowrate

$$
\begin{array}{rc}
\text { \# of Sewer Customers }= & 54 \\
\text { Equivalent Population }= & 135 \mathrm{People} \\
\text { Estimated Average Flow }= & 13500 \mathrm{gpd} \\
\text { Estimated Average Flow }= & 9.38 \mathrm{gpm} \\
\text { Calculated Peaking Factor }= & 4.21 \mathrm{gpm} \\
\text { Peak Flow }= & 39.43 \mathrm{gpm} \\
\text { I \& I allowance } & 0 \mathrm{gpm} \\
\text { Design Flowrate }= & 39.43
\end{array}
$$

Say Average Flowrate $=$	$\mathbf{1 0}$ gpm
Say Design Flowrate $=$	$\mathbf{7 5}$ gpm

Average Flowrate $=\quad 10.00 \mathrm{gpm}$
Wetwell Diameter $=\quad 6$ feet
Pump On Level $=\quad 338.4$ feet
Pump Off Level $=336.85$ feet
Volume to Pump Start $=\quad 328$ gallons
Filling Time for Average Flow $=\quad 32.79$ min

Calculate Min Pump Cycle Time - Tmin

$$
\mathrm{P}=\quad 75 \mathrm{gpm} \quad \text { (Pump Design Flowrate) }
$$

Minimum cycle time will be reached when sewage flow rate is half of the pumping rate.

$$
\begin{array}{cc}
\operatorname{Tmin} & =2 \mathrm{~V} / \mathrm{P} \\
\mathrm{~V}= & 328 \text { gallons } \quad \text { (Volume to Pump Start) } \\
\mathrm{Tmin}= & 8.74 \text { minutes }
\end{array}
$$

Alternating Pumps are used, so Tmin per pump $=2^{*}$ Tmin

$$
\text { Tmin per Pump }=\quad 17.49 \text { minutes }
$$

